Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 050502    DOI: 10.1088/1674-1056/25/5/050502
GENERAL Prev   Next  

New data assimilation system DNDAS for high-dimensional models

Qun-bo Huang(皇群博)1,2,3, Xiao-qun Cao(曹小群)1,3, Meng-bin Zhu(朱孟斌)1,3, Wei-min Zhang(张卫民)1,3, Bai-nian Liu(刘柏年)1,3
1. College of Computer, National University of Defense Technology, Changsha 410073, China;
2. Weather Center of PLA Air Force, Beijing 100843, China;
3. Academy of Ocean Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  The tangent linear (TL) models and adjoint (AD) models have brought great difficulties for the development of variational data assimilation system. It might be impossible to develop them perfectly without great efforts, either by hand, or by automatic differentiation tools. In order to break these limitations, a new data assimilation system, dual-number data assimilation system (DNDAS), is designed based on the dual-number automatic differentiation principles. We investigate the performance of DNDAS with two different optimization schemes and subsequently give a discussion on whether DNDAS is appropriate for high-dimensional forecast models. The new data assimilation system can avoid the complicated reverse integration of the adjoint model, and it only needs the forward integration in the dual-number space to obtain the cost function and its gradient vector concurrently. To verify the correctness and effectiveness of DNDAS, we implemented DNDAS on a simple ordinary differential model and the Lorenz-63 model with different optimization methods. We then concentrate on the adaptability of DNDAS to the Lorenz-96 model with high-dimensional state variables. The results indicate that whether the system is simple or nonlinear, DNDAS can accurately reconstruct the initial condition for the forecast model and has a strong anti-noise characteristic. Given adequate computing resource, the quasi-Newton optimization method performs better than the conjugate gradient method in DNDAS.
Keywords:  data assimilation      dual-number      optimization      dual-number data assimilation system  
Received:  17 November 2015      Revised:  07 January 2016      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  02.60.-x (Numerical approximation and analysis)  
  02.30.Zz (Inverse problems)  
  02.60.Pn (Numerical optimization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41475094 and 41375113).
Corresponding Authors:  Qun-bo Huang     E-mail:  hqb09@163.com

Cite this article: 

Qun-bo Huang(皇群博), Xiao-qun Cao(曹小群), Meng-bin Zhu(朱孟斌), Wei-min Zhang(张卫民), Bai-nian Liu(刘柏年) New data assimilation system DNDAS for high-dimensional models 2016 Chin. Phys. B 25 050502

[1] Clifford W K 1871 Proceedings of the London Mathematical Society (London: Oxford University Press) p. 381
[2] Yang A T and Freudenstein F 1964 J. Appl. Mech. 31 300
[3] Denavit J 1956 Description and Displacement Analysis of Mechanisms Based on (2x2) Dual Matrices (Ph.D. Dissertation) (Evanston: Northwestern University)
[4] Li D W 1992 J. South China Agr. Univ. 13 88 (in Chinese)
[5] Zhao T Z 1994 J. B. Inst. Techno. 14 50 (in Chinese)
[6] Wang J Y, Liang H C, Sun Z W and Zhang S J 2012 Acta Aeronaut. Astronaut. Sin. 33 1881 (in Chinese)
[7] Hrdina J and Vasik P 2014 J. Appl. Math. 91 688
[8] Cao X Q, Song J Q, Zhang W M, Zhao Y L and Liu B N 2013 Acta Phys. Sin. 62 170504 (in Chinese)
[9] Yu W B and Blair M 2013 Comput. Phys. Commun. 184 1446
[10] Andrews J M 2013 J. Fluids Eng. 135 0612061
[11] Fike J A 2013 Multi-objective Optimization using Hyper-dual Numbers (Ph. D. Dissertation) (Palo Alto: Stanford University)
[12] Tanaka M, Sasagawa T, Omote R, Fujikawa M, Balzani D and Schroder J 2015 Comput. Methods Appl. Mech. Engrg. 283 22
[13] Cao X Q, Huang Q B, Liu B N, Zhu M B and Yu Y 2015 Acta Phys. Sin. 64 130502 (in Chinese)
[14] Cao X Q, Song J Q, Zhang W M and Zhao J 2011 Chin. Phys. B 20 090401
[15] Zhang L, Huang S X, Shen C and Shi W L 2011 Chin. Phys. B 20 0129201
[16] Zhang L, Huang S X, Shen C and Shi W L 2011 Chin. Phys. B 20 0119201
[17] Zhao G Z, Yu X J, Xu Y and Zhu J 2010 Chin. Phys. B 19 070203
[18] Zhong J, Fei J F, Huang S X and Du H D 2012 Acta Phys. Sin. 14 149203 (in Chinese)
[19] Zhang W M, Cao X Q and Song J Q 2012 Acta Phys. Sin. 24 249202 (in Chinese)
[20] Zhu M B, Zhang W M, Cao X Q and Yu Y 2014 Chin. Phys. B 23 069202
[21] Zhu M B, Zhang W M, Cao X Q 2013 Acta Phys. Sin. 63 189203 (in Chinese)
[22] Cao X Q, Song J Q, Zhu X Q, Zhang L L, Zhang W M and Zhao J 2012 Chin. Phys. B 21 020203
[23] Leng H Z, Song J Q, Cao X Q and Yang J H 2012 Acta Phys. Sin. 61 070501 (in Chinese)
[24] Hu G G, Gao S S, Zhong Y M and Gao B B 2015 Chin. Phys. B 24 070202
[25] Leng H Z and Song J Q 2013 Chin. Phys. B 22 030505
[26] Liu B N, Zhang W M, Cao X Q, Zhao Y L, Huang Q B and Luo Y 2015 Chin. J. Geophys. Ch. 58 1526 (in Chinese)
[27] Benedetti A 2014 ECMWF Tranning Course
[28] Errico M R, Vukicevic T and Raeder K 1993 Tellus 45 462
[29] Giering R and Kaminski T 1998 Trans. Math. Software 24 437
[30] Hascoet L 2004 Proceedings of the ECCOMAS Conference, July 24-28, 2004, Jyvaskyla, Finland
[31] Griewank A 1989 Mathematical Programming: Recent Developments and Applications (Tanabe: Kluwer Academic) p. 83
[32] Sambridge M, Rickwood P, Rawlinso N and Sommacal S 2007 Geophys. J. Int. 170 1
[33] Zhu X Q 2008 (Ph. D. Dissertation) (Changsha: National University of Defense Technology) (in Chinese)
[34] Snyder C, Bengtsson T, Bickel P and Anderson J 2008 Mon. Wea. Rev. 136 4629
[35] Wu Q K 2012 Acta Phys. Sin. 61 020203 (in Chinese)
[36] Shanno D F and Phua K H 1978 Math. Program 14 149
[37] Shanno D F and Phua K H 1980 ACM Trans. On Math. Software 6 618
[38] Davidon W C 1991 SIAM J. Optimiz. 1 1
[39] Wolfe P 1971 SIAM Rev. 23 054203
[40] Andrei N 2008 ICI Technical Report 13/08
[41] Shanno D F and Phua K H 1976 ACM Trans. Math. Software 2 87
[42] Shanno D F and Kettler P C 1970 Math. Comput. 24 657
[43] Lorenz E N 1963 J. Atoms. Sci. 20 130
[44] Cao X Q 2013 Acta Phys. Sin. 62 230505 (in Chinese)
[45] Lorenz E N 1996 ECMWF Proc. Seminar 1
[46] Lorenz E N and Emanuel K A 1998 J. Atmos. Sci. 55 399
[47] Ott E, Hunt B R, Szunyogh I, Zimin A V, Kostelich E, Corazza M, Kalnay E, Patil D J and Yorke J A 2004 Tellus A 56 415
[1] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[2] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[3] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[4] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[5] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[6] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[7] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[8] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[9] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[10] Efficient sampling for decision making in materials discovery
Yuan Tian(田原), Turab Lookman, and Dezhen Xue(薛德祯). Chin. Phys. B, 2021, 30(5): 050705.
[11] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
[12] Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(2): 023101.
[13] A new algorithm for reconstructing the three-dimensional flow field of the oceanic mesoscale eddy
Chao Yan(颜超), Jing Feng(冯径), Ping-Lv Yang(杨平吕), and Si-Xun Huang(黄思训). Chin. Phys. B, 2021, 30(12): 120204.
[14] Distributed optimization for discrete-time multiagent systems with nonconvex control input constraints and switching topologies
Xiao-Yu Shen(沈小宇), Shuai Su(宿帅), and Hai-Liang Hou(侯海良). Chin. Phys. B, 2021, 30(12): 120507.
[15] Heating rate effects for the melting transition of Pt-Ag-Au nanoalloys
Hüseyin Yıldırım and Ali Kemal Garip. Chin. Phys. B, 2021, 30(10): 108201.
No Suggested Reading articles found!