CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Fabrication of CoFe2O4 ferrite nanowire arrays in porous silicon template and their local magnetic properties |
Hui Zheng(郑辉), Man-Gui Han(韩满贵), Long-Jiang Deng(邓龙江) |
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract CoFe2O4 ferrite nanowire arrays are fabricated in porous silicon templates. The porous silicon templates are prepared via metal-assisted chemical etching with gold (Au) nanoparticles as the catalyst. Subsequently, CoFe2O4 ferrite nanowires are successfully synthesized into porous silicon templates by the sol-gel method. The magnetic hysteresis loop of nanowire array shows an isotropic feature of magnetic properties. The coercivity and squareness ratio (Mr/Ms) of ensemble nanowires are found to be 630 Oe (1 Oe=79.5775 A·m-1 and 0.4 respectively. However, the first-order reversal curve (FORC) is adopted to reveal the probability density function of local magnetostatic properties (i.e., interwire interaction field and coercivity). The FORC diagram shows an obvious distribution feature for interaction field and coercivity. The local coercivity with a value of about 1000 Oe is found to have the highest probability.
|
Received: 27 June 2015
Revised: 01 November 2015
Accepted manuscript online:
|
PACS:
|
62.23.Hj
|
(Nanowires)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61271039), the Scientific Projects of Sichuan Province, China (Grant No. 2015HH0016), and the Natural Science Foundations of Zhejiang Province, China (Grant Nos. LQ12E02001 and Y107255). |
Corresponding Authors:
Man-Gui Han
E-mail: magnet@uestc.edu.cn
|
Cite this article:
Hui Zheng(郑辉), Man-Gui Han(韩满贵), Long-Jiang Deng(邓龙江) Fabrication of CoFe2O4 ferrite nanowire arrays in porous silicon template and their local magnetic properties 2016 Chin. Phys. B 25 026201
|
[1] |
Gudiksen M S, Lauhon L J, Wang J, Smith D C and Lieber C M 2002 Nature 415 617
|
[2] |
Zhang S Y, Xiu X Q, Hua X M, Xie Z L, Liu B, Chen P, Han P, Lu H, Zhang R and Zheng Y D 2014 Chin. Phys. Lett. 31 056802
|
[3] |
Lu H P, Han M G, Cai L and Deng L J 2011 Chin. Phys. B 20 060701
|
[4] |
Wang Z W, Cai J Q, Wu Y Z, Wang H J and Xu X L 2015 Chin. Phys. B 24 017802
|
[5] |
Jia Z G, Yang L L, Wang Q Z, Liu J H, Ye M F and Zhu R S 2014 Mater. Chem. Phys. 145 116
|
[6] |
Li X H, Xu C L, Han X H, Qiao L, Wang T and Li F S 2010 Nanoscale Res. Lett. 5 1039
|
[7] |
Petrov V M, Bichurin M I and Srinivasan G 2010 J. Appl. Phys. 107 073908
|
[8] |
Ramulu T S, Venu R, Anandakumar S, Sudha Rani V, Yoon S S and Kim C G 2012 Thin Solid Films 520 5508
|
[9] |
Pirouzfar A and Seyyed Ebrahimi S A 2014 J. Magn. Magn. Mater. 370 1
|
[10] |
Xu Y, Xue D S, Gao D Q, Fu J L, Fan X L, Guo D W, Gao B and Sui W B 2009 Electrochim. Acta 54 5684
|
[11] |
Hua Z H, Chen R S, Li C L, Yang S G, Lu M, Gu B X and Du Y W 2007 J. Alloys Compnd. 427 199
|
[12] |
Gu J J, Han J R, Cheng F W, Zhao G L, Liu L H and Sun H Y 2012 Acta Phys. Sin 61 097502 (in Chinese)
|
[13] |
Adeyeye A O and Singh N 2008 J. Phys. D: Appl. Phys. 41 153001
|
[14] |
Uhlir A 1956 Bell Syst. Tech. J. 35 333
|
[15] |
Nicewarner-Pena S R, Freeman R G, Reiss B D, He L, Pena D J, Walton I D, Cromer R, Keating C D and Natan M J 2001 Science 294 137
|
[16] |
Zheng H, Han M G, Deng J X, Zheng L, Wu J, Deng L J and Qin H B 2014 Appl. Surf. Sci. 311 672
|
[17] |
Huang Z P, Zhang X X, Reiche M, Liu L F, Lee W, Shimizu T, Senz S and Gösele U 2008 Nano Lett. 8 3046
|
[18] |
Kim J K, Han H, Kim Y H, Choi S H, Kim J C and Lee W 2011 ACS Nano 5 3222
|
[19] |
Zheng H, Zhou J J, Deng J X, Zheng P, Zheng L, Han M G, Yang Y Q, Deng L J and Qin H B 2014 Mater. Lett. 123 181
|
[20] |
Pike C R, Roberts A P and Verosub K L 1999 J. Appl. Phys. 85 6660
|
[21] |
Davies J E, Wu J, Leighton C and Liu K 2005 Phys. Rev. B 72 134419
|
[22] |
Béron F, Pirota K R, Vega V, Prida V M, Fernández A, Hernando B and Knobel M 2011 New J. Phys. 13 013035
|
[23] |
Pike C R, Ross C A, Scalettar R T and Zimanyi G 2005 Phys. Rev. B 71 134407
|
[24] |
Zu X H, Tu W P and DengY L 2011 J. Nanopart. Res. 13 1
|
[25] |
Jennifer Q Lu and Yi S S 2006 Langmuir 22 3951
|
[26] |
Polleux J, Rasp M, Louban I, Plath N, Feldhoff A and Spatz J P 2011 ACS Nano 5 6355
|
[27] |
Glass R, Moller M and Spatz J P 2003 Nanotechnology 14 1153
|
[28] |
Huang Z P, Geyer N, Liu L F and Zhong P 2010 Nanotechnology 21 465301
|
[29] |
Yae S J, Morii Y, Fukumuro N and Matsuda H 2012 Nanoscale Res. Lett. 7 352
|
[30] |
Chartier C, Bastide S and Levy-Clement C 2008 Electrochimica Acta 53 5509
|
[31] |
Huang Z P, Shimizu T, Senz S, Zhang Z, Zhang X X, Lee W, Geyer N and Gosele U 2009 Nano Lett. 9 2519
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|