Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010201    DOI: 10.1088/1674-1056/25/1/010201
GENERAL   Next  

A new six-component super soliton hierarchy and its self-consistent sources and conservation laws

Han-yu Wei(魏含玉)1 and Tie-cheng Xia(夏铁成)2
1. College of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China;
2. Department of Mathematics, Shanghai University, Shanghai 200444, China
Abstract  A new six-component super soliton hierarchy is obtained based on matrix Lie super algebras. Super trace identity is used to furnish the super Hamiltonian structures for the resulting nonlinear super integrable hierarchy. After that, the self-consistent sources of the new six-component super soliton hierarchy are presented. Furthermore, we establish the infinitely many conservation laws for the integrable super soliton hierarchy.
Keywords:  super Hamiltonian structures      self-consistent sources      conservation laws      Fermi variable  
Received:  31 May 2015      Revised:  21 September 2015      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  02.20.Sv (Lie algebras of Lie groups)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11547175, 11271008 and 61072147), the First-class Discipline of University in Shanghai, China, and the Science and Technology Department of Henan Province, China (Grant No. 152300410230).
Corresponding Authors:  Han-yu Wei     E-mail:  weihanyu8207@163.com

Cite this article: 

Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成) A new six-component super soliton hierarchy and its self-consistent sources and conservation laws 2016 Chin. Phys. B 25 010201

[1] Chowdhury A R and Roy S 1986 J. Math. Phys. 27 2464
[2] Hu X B 1997 J. Phys. A: Math. Gen. 30 619
[3] Ma W X, He J S and Qin Z Y 2008 J. Math. Phys. 49 033511
[4] Tao S X and Xia T C 2010 Chin. Phys. Lett. 4 040202
[5] Tao S X and Xia T C 2010 Chin. Phys. B. 7 070202
[6] Yu J, He J S, Ma W X and Cheng Y 2010 Chin. Ann. Math. Ser. B 31 361
[7] Zeng Y B 1994 Physica D 73 171
[8] Meínikov V K 1992 Inverse Probl. 8 133
[9] Yu F J and Li L 2008 Chin. Phys. B 17 3965
[10] Xia T C 2010 Chin. Phys. B 19 100303
[11] Wei H Y and Xia T C 2013 J. Appl. Math. 2013 913758
[12] Miura R M, Gardner C S and Kruskal M D 1968 J. Math. Phys. 9 1204
[13] Wadati M, Sanuki H and Konno K 1975 Prog. Theor. Phys. 53 419
[14] Bluman G W and Anco S C 2002 Symmetry and Integration Methods for Differential Equations (New York: Springer) p. 419
[15] Guo F K 1996 Math. Appl. 9 495
[16] Li Z, Dong H H and Yang H W 2009 Int. J. Theor. Phys. 48 2172
[17] Tu G Z 1990 Northeastern Math. J. 6 26
[18] Zhang Y F 2011 Commun. Theor. Phys. 56 805
[19] Zhang Y F and Hou Y C 2011 Commun. Theor. Phys. 56 856
[20] Zhang Y F, Tam H and Feng B L 2011 Chaos Soliton Fract. 44 968
[1] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[2] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[3] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[4] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[5] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[6] Symmetries and conservation laws of one Blaszak–Marciniak four-field lattice equation
Wang Xin (王鑫), Chen Yong (陈勇), Dong Zhong-Zhou (董仲周). Chin. Phys. B, 2014, 23(1): 010201.
[7] Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations
Huang Lang-Yang (黄浪扬), Jiao Yan-Dong (焦艳东), Liang De-Min (梁德民). Chin. Phys. B, 2013, 22(7): 070201.
[8] Integrability of extended (2+1)-dimensional shallow water wave equation with Bell polynomials
Wang Yun-Hu (王云虎), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(5): 050509.
[9] Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod
Wang Peng (王鹏), Xue Yun (薛纭), Liu Yu-Lu (刘宇陆). Chin. Phys. B, 2013, 22(10): 104503.
[10] Lattice soliton equation hierarchy and associated properties
Zheng Xin-Qing (郑新卿), Liu Jin-Yuan (刘金元). Chin. Phys. B, 2012, 21(9): 090202.
[11] Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics
Wang Peng(王鹏), Xue Yun(薛纭), and Liu Yu-Lu(刘宇陆) . Chin. Phys. B, 2012, 21(7): 070203.
[12] An extension of the modified Sawada–Kotera equation and conservation laws
He Guo-Liang(何国亮) and Geng Xian-Guo(耿献国) . Chin. Phys. B, 2012, 21(7): 070205.
[13] Nonlinear integrable couplings of a nonlinear Schrödinger–modified Korteweg de Vries hierarchy with self-consistent sources
Yang Hong-Wei (杨红卫), Dong Huan-He (董焕河), Yin Bao-Shu (尹宝树). Chin. Phys. B, 2012, 21(10): 100204.
[14] Conservation laws for variable coefficient nonlinear wave equations with power nonlinearities
Huang Ding-Jiang(黄定江), Zhou Shui-Geng(周水庚), and Yang Qin-Min(杨勤民). Chin. Phys. B, 2011, 20(7): 070202.
[15] A note on teleparallel Killing vector fields in Bianchi type VIII and IX space–times in teleparallel theory of gravitation
Ghulam Shabbir, Amjad Ali, and Suhail Khan. Chin. Phys. B, 2011, 20(7): 070401.
No Suggested Reading articles found!