Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 090201    DOI: 10.1088/1674-1056/24/9/090201
RAPID COMMUNICATION   Next  

Structural and robustness properties of smart-city transportation networks

Zhang Zhen-Gang (张振刚)a, Ding Zhuo (丁卓)a, Fan Jing-Fang (樊京芳)b c, Meng Jun (孟君)c, Ding Yi-Min (丁益民)d, Ye Fang-Fu (叶方富)c, Chen Xiao-Song (陈晓松)b
a School of Business Administration, South China University of Technology, Guangzhou 510641, China;
b Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
c Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
d Faculty of Physics and Electronics, Hubei University, Wuhan 430062, China
Abstract  

The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities.

Keywords:  percolation phase transition      finite size scaling theory      network      smart city  
Received:  25 May 2015      Revised:  01 June 2015      Accepted manuscript online: 
PACS:  02.10.Ox (Combinatorics; graph theory)  
  05.70.Fh (Phase transitions: general studies)  
  64.60.-i (General studies of phase transitions)  
Fund: 

Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

Corresponding Authors:  Meng Jun, Chen Xiao-Song     E-mail:  mengjun@iphy.ac.cn;chenxs@itp.ac.cn

Cite this article: 

Zhang Zhen-Gang (张振刚), Ding Zhuo (丁卓), Fan Jing-Fang (樊京芳), Meng Jun (孟君), Ding Yi-Min (丁益民), Ye Fang-Fu (叶方富), Chen Xiao-Song (陈晓松) Structural and robustness properties of smart-city transportation networks 2015 Chin. Phys. B 24 090201

[1] Watts D J and Strogatz S H 1998 Nature 393 6684
[2] Barabási A L and Albert R 1999 Science 286 5439
[3] Albert R and Barabási A 2002 Rev. Mod. Phys. 74 47
[4] Newman M 2010 Networks: An Introduction (Oxford University Press) pp. 12-16
[5] Buldyrev S V, Parshani R, Paul G, Stanley H E and Havlin S 2010 Nature 464 7291
[6] Cohen R and Havlin S 2010 Complex Networks: Structure, Robustness and Function (Cambridge University Press) p. 25
[7] Erdős P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17
[8] Erdős P and Rényi A 1959 Publ. Math. Debrecen 6 290
[9] Albert A, Jeong H and Barabási A L 2000 Nature 406 6794
[10] Colaiori F, Flammini A, Maritan A and Banavar J R 1997 Phys. Rev. E 55 1298
[11] Faloutsos M, Faloutsos P and Faloutsos C 1999 ACM SIGCOMM Computer Communication Review 29 256
[12] Banavar J R, Maritan A and Rinaldo A 1999 Nature 399 6732
[13] Jeong H, Tombor B, Albert R, Oltvai Z and Barabási A L 2000 Nature 407 6804
[14] Williams R J and Martinez N D 2000 Nature 404 6774
[15] Girvan M and Newman M 2002 PNAS 99 7821
[16] Stauffer D and Aharony A 1994 Introduction to Percolation Theory. (Taylor & Francis) pp. 2-8
[17] Bollobás B 2001 Random Graphs (Cambridge University Press) pp. 130-143
[18] Achlioptas D, D'Souza R M and Spencer J 2009 Science 323 5920
[19] Costa R A, Dorogovtsev S N, Goltsev A V and Mendes J F F 2010 Phys. Rev. Lett. 105 255701
[20] Riordan O and Warnke L 2011 Science 333 6040
[21] Fan J F, Liu M X, Li L S and Chen X S 2012 Phys. Rev. E 85 061110
[22] Fan J F and Chen X S 2014 EPL 107 28005
[1] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[2] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[3] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[4] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[5] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[6] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[7] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[8] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[9] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[10] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[11] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[12] Improved functional-weight approach to oscillatory patterns in excitable networks
Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2022, 31(9): 090502.
[13] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[14] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[15] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
No Suggested Reading articles found!