Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110204    DOI: 10.1088/1674-1056/23/11/110204
GENERAL Prev   Next  

Dynamic investigation of the finite dissolution of silicon particles in aluminum melt with a lower dissolution limit

Dong Xi-Xi (董曦曦)a b, He Liang-Ju (何良菊)a c, Mi Guang-Bao (弭光宝)a, Li Pei-Jie (李培杰)a b d
a National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084, China;
b Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
c School of Aerospace, Tsinghua University, Beijing 100084, China;
d State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Abstract  The finite dissolution model of silicon particles in the aluminum melt is built and calculated by the finite difference method, and the lower dissolution limit of silicon particles in the aluminum melt is proposed and verified by experiments, which could be the origin of microinhomogeneity in aluminum-silicon melts. When the effects of curvature and interface reaction on dissolution are not considered; the dissolution rate first decreases and later increases with time. When the effects of curvature and interface reaction on dissolution are considered, the dissolution rate first decreases and later increases when the interface reaction coefficient (k) is larger than 10-1, and the dissolution rate first decreases and later tends to be constant when k is smaller than 10-3. The dissolution is controlled by both diffusion and interface reaction when k is larger than 10-3, while the dissolution is controlled only by the interface reaction when k is smaller than 10-4.
Keywords:  silicon particle      aluminum melt      lower dissolution limit      finite dissolution model  
Received:  18 March 2014      Revised:  05 June 2014      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.70.Bf (Finite-difference methods)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  61.25.Mv (Liquid metals and alloys)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632203).
Corresponding Authors:  Dong Xi-Xi     E-mail:  dongxx09@mails.tsinghua.edu.cn

Cite this article: 

Dong Xi-Xi (董曦曦), He Liang-Ju (何良菊), Mi Guang-Bao (弭光宝), Li Pei-Jie (李培杰) Dynamic investigation of the finite dissolution of silicon particles in aluminum melt with a lower dissolution limit 2014 Chin. Phys. B 23 110204

[1] Whelan M J 1969 Met. Sci. J. 3 95
[2] Aaron H B and Kotler G R 1971 Metall. Trans. 2 393
[3] Vermolen F J, Javierre E, Vuik C, Zhao L and Zwaag S 2007 Comput. Mater. Sci. 39 767
[4] Xu Z J and Meakin P 2008 J. Chem. Phys. 129 014705
[5] Batchelor A W, Loh N L and Chandrasekaran M 2006 Materials Degradation and Its Control by Surface Engineering (2nd edn.) (London: Imperial College Press) pp. 161-164
[6] Pekguleryuz M O and Gruzleski J E 1989 Metall. Trans. B 20 815
[7] Wu Q, Li S S, Ma Y and Gong S K 2012 Chin. Phys. B 21 109102
[8] Ju Y Y, Zhang Q M, Gong Z Z and Ji G F 2013 Chin. Phys. B 22 083101
[9] Zhang B H and Wu X P 2013 Chin. Phys. B 22 056601
[10] Song C, Li D D, Xu Y C, Pan B C, Liu C S and Wang Z G 2014 Chin. Phys. B 23 056801
[11] Srirangam P, Kramer M J and Shankar S 2011 Acta Mater. 59 503
[12] Mauro N A, Bendert J C, Vogt A J, Gewin J M and Kelton K F 2011 J. Chem. Phys. 135 044502
[13] Calvo-Dahlborg M, Popel P S, Kramer M J, Besser M, Morris J R and Dahlborg U 2013 J. Alloy. Compd. 550 9
[14] Popel P S, Calvo-Dahlborg M and Dahlborg U 2007 J. Non-Cryst. Solids 353 3243
[15] Wen D D, Peng P, Jiang Y Q, Tian Z A and Liu R S 2013 Acta Phys. Sin. 19 196101 (in Chinese)
[16] Yang L, Bian X F, Pan S P and Qin J Y 2012 Acta Phys. Sin. 61 036101 (in Chinese)
[17] Li Y D, Hao Q H, Cao Q L and Liu C S 2010 Chin. Phys. B 19 086104
[18] Heard D W, Donaldson I W and Bishop D P 2009 J. Mater. Process. Technol. 209 5902
[19] Khoo K H, Chan T L, Kim M and Chelikowsky J R 2011 Phys. Rev. B 84 214203
[20] Tundal U H and Ryum N 1992 Metall. Trans. A 23 445
[21] Vermolen F J, Slabbekoorn H M and Zwaag S 1997 Mater. Sci. Eng. A 231 80
[22] Durbin T L 2005 Modeling Dissolution in Aluminum Alloys (Ph.D. Thesis) (Atlanta: Georgia Institute of Technology)
[23] Nojiri N and Enomoto M 1995 Scr. Metall. Mater. 32 787
[24] Zhang R, Cao Q F, Pang S X, Wei Y and Liu L 2001 Sci. Technol. Adv. Mater. 2 3
[25] Baty D L, Tanzilli R A and Heckel R W 1970 Metall. Trans. 1 1651
[26] Tanzilli R A and Heckel R W 1968 Trans. Metall. Soc. AIME 242 2313
[27] Wautelet M 1991 J. Phys. D: Appl. Phys. 24 343
[28] Zhou L 2002 Physical Chemistry Tutorials (1st edn.) (Beijing: Science Press) pp. 164-254
[29] Li Z H 1985 Element Properties Data Manual (1st edn.) (Shijiazhuang: Hebei People's Publishing House) p. 14
[30] Inatomi Y, Onishi F, Nagashio K and Kuribayashi K 2007 Int. J. Thermophys. 28 44
[31] Gunduz M and Hunt J D 1985 Acta Metall. 33 1651
[32] Li P J 1995 Structure and Heredity of Al-Si Alloys (Ph.D. Thesis) (Harbin: Harbin Institute of Technology)
[33] Petrescu M 1970 Z. Metallk. 61 14
[34] Min N B 1982 Physical Basis of Crystal Growth (1st edn.) (Shanghai: Shanghai Science and Technology Press) pp. 307-308
[35] Wang R Y, Lu W H and Hogon L M 1995 Mater. Sci. Technol. 11 441
[36] Yilmaz F and Atasoy O A 1992 J. Cryst. Growth 118 377
[1] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[5] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[6] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[7] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[8] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[9] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[10] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[11] Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China
Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2021, 30(12): 120202.
[12] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[13] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[14] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[15] Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise
Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷). Chin. Phys. B, 2021, 30(8): 080201.
No Suggested Reading articles found!