Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 105202    DOI: 10.1088/1674-1056/23/10/105202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

A radial non-uniform helicon equilibrium discharge model

Cheng Yu-Guo (成玉国), Cheng Mou-Sen (程谋森), Wang Mo-Ge (王墨戈), Li Xiao-Kang (李小康)
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Helicon discharges have attracted great attention in the electric propulsion community in recent years. To acquire the equilibrium properties, a self-consistent model is developed, which combines the helicon/Trivelpiece-Gould (TG) waves-plasma interaction mechanism and the plasma flow theory under the confinement of the magnetic field. The calculations reproduce the central peak density phenomenon observed in the experiments. The results show that when operating in the wave coupling mode, high magnetic field strength B0 results in the deviation of the central density versus B0 from the linear relationship, while the density rise becomes flatter as the radiofrequency (rf) input power Prf grows, and the electron temperature Te radial profile is mainly determined by the characteristic of the rf energy deposition. The model could provide suggestions in choosing the B0 and Prf for medium power helicon thrusters.
Keywords:  helicon discharges      magnetic field      radial properties      thruster  
Received:  30 January 2014      Revised:  28 March 2014      Accepted manuscript online: 
PACS:  52.75.Di (Ion and plasma propulsion)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  02.60.Cb (Numerical simulation; solution of equations)  
  88.85.J- (Vehicle energy storage)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11305265).
Corresponding Authors:  Wang Mo-Ge     E-mail:  tlothf@126.com
About author:  52.75.Di; 52.50.Qt; 02.60.Cb; 88.85.J-

Cite this article: 

Cheng Yu-Guo (成玉国), Cheng Mou-Sen (程谋森), Wang Mo-Ge (王墨戈), Li Xiao-Kang (李小康) A radial non-uniform helicon equilibrium discharge model 2014 Chin. Phys. B 23 105202

[1]Longmier B W, Cassady L D, Ballenger M G, Carter M D, Chang-Diaz F R, Glover T W, Ilin A V, McCaskill G E, Olsen C S and Jared P Squire 2011 J. Prop. Power 27 915
[2]Sheth R B, Ungar E K and Chambliss J P 2012 42nd International Conference on Environmental Systems, July 15-19, San Diego, USA, AIAA 2012-3497
[3]Cheng K and Pan W X 2009 Chin. Phys. Lett. 26 1252013
[4]Zhang R, Zhang D X, Zhang F, He Z and Wu J J 2013 Acta Phys. Sin. 62 025207 (in Chinese)
[5]West M D, Charles C and Boswell R W 2009 J. Phys. D: Appl. Phys. 42 245021
[6]Takahashi K, Lafleur T, Charles C, Alexander P, Boswell R W, Perren M, Laine R, Pottinger S, Lappas V, Harle T and Lamprou D 2011 Appl. Phys. Lett. 98 141503
[7]Batishchev O V 44th AIAA/ASME/SAE/ASEE 2008 Joint Propulsion Conference & Exhibit, July 21-23, Harford CT, USA, AIAA 2008-5293
[8]Beal B E and FabianM 2007 International Electric Propulsion Conference, September 17-20, Florence, Italy, 2007-162
[9]Palmer D D, Walker M L R, Manete M, Johan C, Cristina B and Daniele P 2008 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 21-23, Harford CT, USA, AIAA 2008-4925
[10]Chen F F 2008 IEEE Trans. Plasma Sci. 36 2095
[11]Boswell R W and Chen F F 1997 IEEE Trans. Plasma Sci. 25 1229
[12]Chen F F and Boswell R W 1997 IEEE Trans. Plasma Sci. 25 1245
[13]Shamrai K P and Taranov V B 1994 Plasma Phys. Control Fusion 36 1719
[14]Shamrai K P and Taranov V B 1995 Phys. Lett. A 204 139
[15]Shamrai K P and Taranov V B 1996 Plasma Sources Sci. Technol. 5 474
[16]Shamrai K P, Pavlenko V P and Taranov V B 1997 Plasma Phys. Control Fusion 39 505
[17]Blackwell D D, madziwa T G, Arnush D and Chen F F 2002 Phys. Rev. Lett. 88 145002
[18]Suwon Cho 1996 Phys. Plasmas 3 4268
[19]Arnush D and Chen F F 1998 Phys. Plasmas 5 1239
[20]Shamrai K P and Shinohara S 2001 Phys. Plasmas 8 4659
[21]Suwon Cho 1999 Phys. Plasmas 6 359
[22]Lieberman M A and Litchtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York: Wiley-Interscience), translated in Chinese by Pi Y K, et al. (in Chinese)
[23]Fruchtman A, Makrinich G and Ashkenazy J 2005 Plasma Sources Sci. Technol. 14 152
[24]Ahedo E 2009 Phys. Plasmas 16 113503
[25]Ahedo E and Jaume Navalarro-cavalle 2013 Phys. Plasmas 20 043512
[26]Curreli D and Chen F F 2011 Phys. Plasmas 18 113501
[27]Chen F F and Curreli D 2013 Phys. Plasmas 20 057102
[28]Hooper E B 1993 J. Prop. Power 9 757
[29]Ahedo E and Merino M 2010 Phys. Plasmas 17 073501
[30]Gilland J, Breun R and Hershkowitz N 1998 Plasma Source Sci. Technol. 7 416
[31]Toki K, Shinohara S, Tanikawa T and Shamrai K P 2006 Thin Solid Films 506-507 597
[32]Chen F F 2007 Plasma Sources Sci. Technol. 16 593
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[4] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[5] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[9] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[10] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[11] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[12] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[13] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
[14] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[15] Research of influence of the additional electrode on Hall thruster plume by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Da-Ren Yu(于达仁). Chin. Phys. B, 2020, 29(9): 095204.
No Suggested Reading articles found!