Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 107402    DOI: 10.1088/1674-1056/23/10/107402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Precursor evolution and growth mechanism of BTO/YBCO films by TFA-MOD process

Wang Hong-Yan (王洪艳)a b, Ding Fa-Zhu (丁发柱)a, Gu Hong-Wei (古宏伟)a, Zhang Teng (张腾)a, Peng Xing-Yu (彭星煜)a b
a Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

In this study, BaTiO3 (BTO)-doped YBCO films are prepared on LaAlO3 (100) single-crystal substrates by metal-organic decomposition (MOD) using trifluoroacetate (TFA) precursor solutions. The critical current density (Jc) of BTO/YBCO film is as high as 10 MA/cm2 (77 K, 0 T). The BTO peak is found in the X-ray diffraction (XRD) pattern of a final YBCO superconductivity film. Moreover, a comprehensive study of the precursor evolution is conducted mainly by X-ray analysis and μ-Raman spectroscopy. It is found that the TFA begins to decompose at the beginning of the thermal process, and then further decomposes as temperature increases, and at 700℃ BTO nanoparticles begin to appear. It suggests that the YBCO film embedded with BTO nanoparticles, whose critical current density (Jc) is enhanced, is successfully prepared by an easily scalable chemical solution deposition technique.

Keywords:  YBa2Cu3O7-x      precursor evolution      BaTiO3      TFA-MOD  
Received:  18 February 2014      Revised:  08 April 2014      Accepted manuscript online: 
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  81.16.Dn (Self-assembly)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51002149 and 51272250) and the National Basic Research Program of China (Grant No. 2011CBA00105).

Corresponding Authors:  Ding Fa-Zhu,Gu Hong-Wei     E-mail:  dingfazhu@mail.iee.ac.cn;guhw@mail.iee.ac.cn
About author:  74.78.-w; 81.16.Dn

Cite this article: 

Wang Hong-Yan (王洪艳), Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾), Peng Xing-Yu (彭星煜) Precursor evolution and growth mechanism of BTO/YBCO films by TFA-MOD process 2014 Chin. Phys. B 23 107402

[1] Lehner T F, 2G HTS Wire status in the USA, 2011, available at http://www.superpower-inc.com/system/files/20111031+ISIS20_Korea_ US+2G+HTS+Wire+Update_TL.pdf
[2]Daibo M, Kakimoto K, Kikutake R, Suzuki R, Lijima Y, Itoh M and Saitoh T 2011 Fujikura Technical Report 2 121
[3]Rupich M W, Li X P, Sathyamurthy S, Thieme C L H, DeMoranville K, Gannon J and Fleshler S 2013 IEEE T. Appl. Supercond. 23 6601205
[4]Foltyn S R, Wang H, Civale L, Jia Q X and Arendt P N 2005 Appl. Phys. Lett. 87 162505
[5]Feldmann D M, Holesinger T G, Maiorov B, Zhou H, Foltyn S R, Coulter J Y and Apodoca I 2010 Supercond. Sci. Technol. 23 115016
[6]Crisan A, Fujiwara S, Nie J C, Sundaresan A and Ihara H 2001 Appl. Phys. Lett. 79 4547
[7]Maiorov B, Wang H, Foltyn S R, Li Y, DePaula R, Stan L, Arendt P N and Civale L 2006 Supercond. Sci. Technol. 19 891
[8]Aytug T, Paranthaman M, Gapud A A, Kang S, Christen H M, Leonard K J, Martin P M, Thompson J R, Christen D K, Meng R, Rusakova I, Chu C W and Johansen T 2005 J. Appl. Phys. 98 114309
[9]Öztürka A, Düzgünb I and Elebi S C 2010 J. Alloys Compd. 795 104
[10]Lu F, Kametani F and Hellstrom E E 2013 Supercond. Sci. Technol. 26 045016
[11]Emergo R L S, Baca F J, Wu J Z, Haugan T J and Barnes P N 2010 Supercond. Sci. Technol. 23 115010
[12]Maiorov B, Baily S A, Zhou H, Ugurlu O, Kennison J A, Dowden P C, Holesinger T G, Foltyn S R and Civale L 2009 Nat. Mater. 8 398
[13]Ding F Z, Gu H W, Zhang T, Wang H Y, Qu F, Qiu Q Q, Dai S T and Peng X Y 2013 Chin. Phys. B 22 077401
[14]Cai B, Holzapfel B, Hanisch J, Fernandez L and Schultz L 2004 Phys. Rev. B 69 104531
[15]MacManus-Driscoll J L, Foltyn S R, Maiorov B, Jia Q X, Wang H, Serquls A, Civale L, Lin Y, Hawley M E, Maley M P and Peterson D E 2005 Appl. Phys. Lett. 86 032505
[16]Develos-Bagarinao K and Yamasaki H 2011 Supercond. Sci. Technol. 24 065017
[17]Yamada Y, Takahashi K, Kobayashi H, Konishi M, Watanabe T, Ibi A, Muroga T, Miyata S, Kato T, Hirayama T and Shiohara Y 2005 Appl. Phys. Lett. 87 132502
[18]Nakaoka K, Matsuda J, Kitoh Y, Goto T, Yamada Y, Izumi T and Shiohara Y 2007 Physica C 519 463
[19]Chen Y Q, Yan F Y, You C Y, Zhao G Y and Jiao Y 2013 J. Alloys Compd. 576 265
[20]Kang S, Leonard K J, Martin P M, Li J and Goyal A 2007 Supercond. Sci. Technol. 20 11
[21]MacManus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A and Civale L 2004 Nat. Mater. 3 439
[22]Gutierrez J, Llordes A, Gazquez J, Gibert M, Roma N and Ricart S 2007 Nat. Mater. 6 367
[23]Ding F Z, Lu X D, Gu H W, Li T and Cao J L 2009 Chin. Phys. B 18 1631
[24]Araki T and Hirabayashi I 2003 Supercond. Sci. Technol. 16 R71
[25]Gazquez J, Sandiumenge F, Coll M, Pomar A, Mestres N, Puig T, Obradors X, Kihn Y, Casanove M J and Ballesteros C 2006 Chem. Mater. 18 6211
[26]Zalamova K, Roma N, Pomar A, Morlens S, Puig T, Gazquez J, Carrillo A E, Sandiumenge F, Ricart S, Mestres N and Obradors X 2006 Chem. Mater. 18 5897
[27]Llordeés A, Zalamova K, Ricart S, Palau A, Pomar A and Puig T 2010 Chem. Mater. 22 1686
[28]Garcia-Hernandez M, Chadeyron G, Boyer D, Garcia-Murillo A, Carrillo-Romo F and Mahiou R 2013 Nano Micro. Lett. 5 57
[29]Zhang Y H, Chan C K, Porter J F and Guo W 1998 J. Mater. Res. 13 2602
[30]Maroni V A, Li Y, Feldmann D M and Jia Q X 2007 J. Appl. Phys. 102 113909
[31]Maroni V A, Reeves J L and Schwab G 2007 Appl. Spectrosc. 61 359
[1] Effect of an electric field on the electrocaloric response of ferroelectrics
Hongbo Liu(刘宏波). Chin. Phys. B, 2018, 27(12): 127701.
[2] On the parameters for electrocaloric effect predicted by indirect method
Hong-Bo Liu(刘宏波). Chin. Phys. B, 2017, 26(11): 117701.
[3] Strongly enhanced flux pinning in the YBa2Cu3O7-X films with the co-doping of BaTiO3 nanorod and Y2O3 nanoparticles at 65 K
Wang Hong-Yan (王洪艳), Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾). Chin. Phys. B, 2015, 24(9): 097401.
[4] Two-dimensional metallic behavior at polar MgO/BaTiO3 (110) interfaces
Du Yan-Ling (杜颜伶), Wang Chun-Lei (王春雷), Li Ji-Chao (李吉超), Zhang Xin-Hua (张新华), Wang Fu-Ning (王芙凝), Liu Jian (刘剑), Zhu Yuan-Hu (祝元虎), Yin Na (尹娜), Mei Liang-Mo (梅良模). Chin. Phys. B, 2015, 24(3): 037301.
[5] Dimension effects on the dielectric properties of fine BaTiO3 ceramics
Hou Zhi-Wen (侯志文), Kang Ai-Guo (康爱国), Ma Wei-Qing (马维清), Zhao Xiao-Long (赵晓龙). Chin. Phys. B, 2014, 23(11): 117701.
[6] Strong flux pinning enhancement in YBa2Cu3O7-x films by embedded BaZrO3 and BaTiO3 nanoparticles
Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾), Wang Hong-Yan (王洪艳), Qu Fei (屈飞), Qiu Qing-Quan (邱清泉), Dai Shao-Tao (戴少涛), Peng Xing-Yu (彭星煜). Chin. Phys. B, 2013, 22(7): 077401.
[7] Fabrication and optical properties of InGaN/GaN multiple quantum well light emitting diodes with amorphous BaTiO3 ferroelectric film
Peng Jing(彭静), Wu Chuan-Ju(吴传菊), Shen Tang-You(孙堂友), Zhao Wen-Ning(赵文宁), Wu Xiao-Feng(吴小锋), Liu Wen(刘文) Wang Shuang-Bao(王双保), Jie Quan-Lin(揭泉林), and Xu Zhi-Mou(徐智谋) . Chin. Phys. B, 2012, 21(6): 067702.
[8] Determination of elastic, piezoelectric, and dielectric constants of an R:BaTiO3 single crystal by Brillouin scattering
He Xiao-Kang(何小亢), Zeng Li-Bo(曾立波), Wu Qiong-Shui(吴琼水), Zhang Li-Yan(张丽艳), Zhu Ke(朱恪), and Liu Yu-Long(刘玉龙) . Chin. Phys. B, 2012, 21(6): 067801.
[9] Characterization of the BaBiO3-doped BaTiO3 positive temperature coefficient of a resistivity ceramic using impedance spectroscopy with Tc=155℃
Yuan Chang-Lai(袁昌来), Liu Xin-Yu(刘心宇), Zhou Chang-Rong(周昌荣), Xu Ji-Wen(许积文), and Yang Yun(杨云) . Chin. Phys. B, 2011, 20(4): 048701.
[10] Influence of oxygen pressure on critical current density and magnetic flux pinning structures in YBa2Cu3O7-x fabricated by chemical solution deposition
Ding Fa-Zhu(丁发柱), Gu Hong-Wei(古宏伟), Zhang Teng(张腾), Dai Shao-Tao(戴少涛), and Xiao Li-Ye(肖立业). Chin. Phys. B, 2011, 20(2): 027402.
[11] Study on reaction mechanism of YBa2Cu3O7-x film by TFA-MOD process
Ding Fa-Zhu(丁发柱), ü Xu-Dong(吕旭东), Gu Hong-Wei(古宏伟), Li Tao(李弢), and Cao Jiang-Li(曹江利). Chin. Phys. B, 2009, 18(4): 1631-1636.
[12] Structural and electronic properties of Fe-doped BaTiO3 and SrTiO3
Zhang Chao(张超), Wang Chun-Lei(王春雷), Li Ji-Chao(李吉超), and Yang Kun(杨鲲) . Chin. Phys. B, 2007, 16(5): 1422-1428.
[13] Ferroelectric behaviour of 30nm BaTiO3 ceramics prepared by high pressure assisted sintering
Xiao Chang-Jiang(肖长江), Chi Zhen-Hua(迟振华), Li Feng-Ying(李凤英), Feng Shao-Min(冯少敏), Jin Chang-Qing(靳常青), Wang Xiao-Hui(王晓慧), Deng Xiang-Yun(邓湘云), and Li Long-Tu(李龙土). Chin. Phys. B, 2007, 16(10): 3125-3128.
[14] Optical properties of carbon nanotubes and BaTiO3 composite thin films
Lü Guo-Wei(吕国伟), Cheng Bo-Li(程波林), Shen Hong(沈鸿), Chen Yu-Jin(陈玉金), Zhou Yue-Liang(周岳亮)†, Chen Zheng-Hao(陈正豪), and Yang Guo-Zhen(杨国桢). Chin. Phys. B, 2006, 15(8): 1815-1818.
[15] Dark decay behaviours of photorefractive grating induced by two deep-trap levels in Ce:BaTiO3
Zhang Ming (张明), Xu Ying (徐英), Hong Zhi (洪治). Chin. Phys. B, 2005, 14(5): 995-998.
No Suggested Reading articles found!