Precursor evolution and growth mechanism of BTO/YBCO films by TFA-MOD process
Wang Hong-Yan (王洪艳)a b, Ding Fa-Zhu (丁发柱)a, Gu Hong-Wei (古宏伟)a, Zhang Teng (张腾)a, Peng Xing-Yu (彭星煜)a b
a Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
In this study, BaTiO3 (BTO)-doped YBCO films are prepared on LaAlO3 (100) single-crystal substrates by metal-organic decomposition (MOD) using trifluoroacetate (TFA) precursor solutions. The critical current density (Jc) of BTO/YBCO film is as high as 10 MA/cm2 (77 K, 0 T). The BTO peak is found in the X-ray diffraction (XRD) pattern of a final YBCO superconductivity film. Moreover, a comprehensive study of the precursor evolution is conducted mainly by X-ray analysis and μ-Raman spectroscopy. It is found that the TFA begins to decompose at the beginning of the thermal process, and then further decomposes as temperature increases, and at 700℃ BTO nanoparticles begin to appear. It suggests that the YBCO film embedded with BTO nanoparticles, whose critical current density (Jc) is enhanced, is successfully prepared by an easily scalable chemical solution deposition technique.
Project supported by the National Natural Science Foundation of China (Grant Nos. 51002149 and 51272250) and the National Basic Research Program of China (Grant No. 2011CBA00105).
Wang Hong-Yan (王洪艳), Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾), Peng Xing-Yu (彭星煜) Precursor evolution and growth mechanism of BTO/YBCO films by TFA-MOD process 2014 Chin. Phys. B 23 107402
Daibo M, Kakimoto K, Kikutake R, Suzuki R, Lijima Y, Itoh M and Saitoh T 2011 Fujikura Technical Report2 121
[3]
Rupich M W, Li X P, Sathyamurthy S, Thieme C L H, DeMoranville K, Gannon J and Fleshler S 2013 IEEE T. Appl. Supercond.23 6601205
[4]
Foltyn S R, Wang H, Civale L, Jia Q X and Arendt P N 2005 Appl. Phys. Lett.87 162505
[5]
Feldmann D M, Holesinger T G, Maiorov B, Zhou H, Foltyn S R, Coulter J Y and Apodoca I 2010 Supercond. Sci. Technol.23 115016
[6]
Crisan A, Fujiwara S, Nie J C, Sundaresan A and Ihara H 2001 Appl. Phys. Lett.79 4547
[7]
Maiorov B, Wang H, Foltyn S R, Li Y, DePaula R, Stan L, Arendt P N and Civale L 2006 Supercond. Sci. Technol.19 891
[8]
Aytug T, Paranthaman M, Gapud A A, Kang S, Christen H M, Leonard K J, Martin P M, Thompson J R, Christen D K, Meng R, Rusakova I, Chu C W and Johansen T 2005 J. Appl. Phys.98 114309
[9]
Öztürka A, Düzgünb I and Elebi S C 2010 J. Alloys Compd.795 104
[10]
Lu F, Kametani F and Hellstrom E E 2013 Supercond. Sci. Technol.26 045016
[11]
Emergo R L S, Baca F J, Wu J Z, Haugan T J and Barnes P N 2010 Supercond. Sci. Technol.23 115010
[12]
Maiorov B, Baily S A, Zhou H, Ugurlu O, Kennison J A, Dowden P C, Holesinger T G, Foltyn S R and Civale L 2009 Nat. Mater.8 398
[13]
Ding F Z, Gu H W, Zhang T, Wang H Y, Qu F, Qiu Q Q, Dai S T and Peng X Y 2013 Chin. Phys. B22 077401
[14]
Cai B, Holzapfel B, Hanisch J, Fernandez L and Schultz L 2004 Phys. Rev. B69 104531
[15]
MacManus-Driscoll J L, Foltyn S R, Maiorov B, Jia Q X, Wang H, Serquls A, Civale L, Lin Y, Hawley M E, Maley M P and Peterson D E 2005 Appl. Phys. Lett.86 032505
[16]
Develos-Bagarinao K and Yamasaki H 2011 Supercond. Sci. Technol.24 065017
[17]
Yamada Y, Takahashi K, Kobayashi H, Konishi M, Watanabe T, Ibi A, Muroga T, Miyata S, Kato T, Hirayama T and Shiohara Y 2005 Appl. Phys. Lett.87 132502
[18]
Nakaoka K, Matsuda J, Kitoh Y, Goto T, Yamada Y, Izumi T and Shiohara Y 2007 Physica C519 463
[19]
Chen Y Q, Yan F Y, You C Y, Zhao G Y and Jiao Y 2013 J. Alloys Compd.576 265
[20]
Kang S, Leonard K J, Martin P M, Li J and Goyal A 2007 Supercond. Sci. Technol.20 11
[21]
MacManus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A and Civale L 2004 Nat. Mater.3 439
[22]
Gutierrez J, Llordes A, Gazquez J, Gibert M, Roma N and Ricart S 2007 Nat. Mater.6 367
[23]
Ding F Z, Lu X D, Gu H W, Li T and Cao J L 2009 Chin. Phys. B18 1631
[24]
Araki T and Hirabayashi I 2003 Supercond. Sci. Technol.16 R71
[25]
Gazquez J, Sandiumenge F, Coll M, Pomar A, Mestres N, Puig T, Obradors X, Kihn Y, Casanove M J and Ballesteros C 2006 Chem. Mater.18 6211
[26]
Zalamova K, Roma N, Pomar A, Morlens S, Puig T, Gazquez J, Carrillo A E, Sandiumenge F, Ricart S, Mestres N and Obradors X 2006 Chem. Mater.18 5897
[27]
Llordeés A, Zalamova K, Ricart S, Palau A, Pomar A and Puig T 2010 Chem. Mater.22 1686
[28]
Garcia-Hernandez M, Chadeyron G, Boyer D, Garcia-Murillo A, Carrillo-Romo F and Mahiou R 2013 Nano Micro. Lett.5 57
[29]
Zhang Y H, Chan C K, Porter J F and Guo W 1998 J. Mater. Res.13 2602
[30]
Maroni V A, Li Y, Feldmann D M and Jia Q X 2007 J. Appl. Phys.102 113909
[31]
Maroni V A, Reeves J L and Schwab G 2007 Appl. Spectrosc.61 359
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.