Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 104701    DOI: 10.1088/1674-1056/23/10/104701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation

Swati Mukhopadhyaya, Iswar Cha, ra Moindalb c
a Department of Mathematics, The University of Burdwan, Burdwan-713104, W. B., India;
b Department of Mathematics, Quaid-i-Azam University 45320, Islamabad, Pakistan;
c Department of Mathematics, Faculty of Science, King Abdulziz University, Jeddah 21589, Saudi Arabia
Abstract  This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid behavior. The flow is subjected to suction/blowing at the surface. Analysis is carried out in presence of thermal radiation and prescribed surface heat flux. In this study, an exponential order stretching velocity and prescribed exponential order surface heat flux are accorded with each other. The governing partial differential equations are first converted into nonlinear ordinary differential equations by using appropriate transformations and then solved numerically. The effect of increasing values of the Casson parameter is to suppress the velocity field. However the temperature is enhanced when Casson parameter increases. It is found that the skin-friction coefficient increases with increasing values of suction parameter. Temperature also increases for large values of power index n in both suction and blowing cases at the boundary. It is observed that the thermal radiation enhances the effective thermal diffusivity and hence the temperature rises.
Keywords:  exponential stretching      suction/blowing      prescribed heat flux      thermal radiation  
Received:  23 October 2013      Revised:  25 March 2014      Accepted manuscript online: 
PACS:  47.15.Cb (Laminar boundary layers)  
  44.20.+b (Boundary layer heat flow)  
  47.50.-d (Non-Newtonian fluid flows)  
Corresponding Authors:  Swati Mukhopadhyay,Iswar Ch,ra Moindal,Tasawar Hayat     E-mail:  swati_bumath@yahoo.co.in;iswar.chandra2010@gmail.com;pensy_t@yahoo.com
About author:  47.15.Cb; 44.20.+b; 47.50.-d

Cite this article: 

Swati Mukhopadhyay, Iswar Ch, ra Moindal, Tasawar Hayat MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation 2014 Chin. Phys. B 23 104701

[38]Ishak A, Nazar R and Pop I 2009 Heat Mass Transfer 45 563
[39]Aman F and Ishak A 2010 Heat Mass Transfer 46 615
[40]Bhattacharyya K 2013 Chin. Phys. B 22 074705
[41]Brewster M Q 1972 Thermal Radiative Transfer Properties (New York: Wiley)
[1]Causey R, Wilson K, Venhaus T and Wampler W R 1999 J. Nucl. Mater. 266 467
[42]Bhattacharyya K 2011 Chin. Phys. Lett. 28 074701
[1] Erratum to “Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux”
Swati Mukhopadhyay and Iswar Chandra Mandal. Chin. Phys. B, 2022, 31(5): 059902.
[2] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[3] Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions
Tasawar Hayat, Ikram Ullah, Taseer Muhammad, Ahmed Alsaedi, Sabir Ali Shehzad. Chin. Phys. B, 2016, 25(7): 074701.
[4] Room temperature direct-bandgap electroluminescence from a horizontal Ge ridge waveguide on Si
Chao He(何超), Zhi Liu(刘智), Bu-Wen Cheng(成步文). Chin. Phys. B, 2016, 25(12): 126104.
[5] Spectral enhancement of thermal radiation by laser fabricating grating structure on nickel surface
Liu Song (刘嵩), Liu Shi-Bing (刘世炳). Chin. Phys. B, 2015, 24(5): 054401.
[6] Boundary layer flow and heat transfer of a Casson fluid past a symmetric porous wedge with surface heat flux
Swati Mukhopadhyay, Iswar Chandra Mandal. Chin. Phys. B, 2014, 23(4): 044702.
[7] Dual solutions in boundary layer flow of a moving fluid over a moving permeable surface in presence of prescribed surface temperature and thermal radiation
Swati Mukhopadhyay. Chin. Phys. B, 2014, 23(1): 014702.
[8] A comparison of different entransy flow definitions and entropy generation in thermal radiation optimization
Zhou Bing (周兵), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(8): 084401.
[9] Quantum nonthermal radiation and horizon surface gravity of an arbitrarily accelerating black hole with electric charge and magnetic charge
Xie Zhi-Kun (谢志堃), Pan Wei-Zhen (潘伟珍), Yang Xue-Jun (杨学军). Chin. Phys. B, 2013, 22(3): 039701.
[10] Effects of thermal radiation on Casson fluid flow and heat transfer over an unsteady stretching surface subjected to suction/blowing
Swati Mukhopadhyay. Chin. Phys. B, 2013, 22(11): 114702.
[11] A possible mechanism for magnetar soft X-ray/$\gamma$-ray emission
Gao Zhi-Fu(高志福), Peng Qiu-He(彭秋和), Wang Na(王娜), and Chou Chih-Kang(邹志刚) . Chin. Phys. B, 2012, 21(5): 057109.
[12] Hawking effect and quantum nonthermal radiation of an arbitrarily accelerating charged black hole using a new tortoise coordinate transformation
Pan Wei-Zhen(潘伟珍),Yang Xue-Jun(杨学军),and Xie Zhi-Kun(谢志堃) . Chin. Phys. B, 2011, 20(4): 049701.
[13] Thermal radiation and nonthermal radiation of the slowly changing dynamic Kerr--Newman black hole
Meng Qing-Miao(孟庆苗), Wang Shuai(王帅), Jiang Ji-Jian(蒋继建), and Deng De-Li(邓德力). Chin. Phys. B, 2008, 17(8): 2811-2816.
[14] Investigation on the thermal radiation properties of antimony doped tin oxide particles
Fu Cheng-Wu(傅成武), Zhang Shuan-Qin(张拴勤), and Chen Ming-Qing(陈明清) . Chin. Phys. B, 2008, 17(3): 1107-1112.
[15] Quantum radiation of non-stationary Kerr-Newman-de Sitter black hole
Jiang Qing-Quan (蒋青权), Yang Shu-Zheng (杨树政), Li Hui-Ling (李慧玲). Chin. Phys. B, 2005, 14(9): 1736-1744.
No Suggested Reading articles found!