Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087402    DOI: 10.1088/1674-1056/23/8/087402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fabrication and properties of the meander nanowires based on ultra-thin Nb films

Zhao Lu (赵璐), Jin Yi-Rong (金贻荣), Li Jie (李洁), Deng Hui (邓辉), Zheng Dong-Ning (郑东宁)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We report the fabrication and the study of superconducting properties of ultra-thin Nb superconducting meander nanowires, which can be used as superconducting nanowire single-photon detectors (SNSPDs). The ultra-thin (about 7-nm thick) Nb films are patterned into micro-bridges, and 100-nm wide meander nanowires by using e-beam lithography (EBL). The average transition temperature (Tc) of the nanowires is about 4.8 K and the critical current density jc is about 2.8× 106 A/cm2. Superconducting characteristics of the specimens at different applied magnetic fields up to 8 T (parallel or perpendicular to the specimen) are systematically investigated. The normalized temperature t (=T/Tc) dependences of the parallel critical field (Hc||) for both the micro-bridge and the meander nanowire are almost the same, following the Ginzburg and Landau (GL) formalism for ultra-thin films. However, in perpendicular field and in the vicinity of Tc (>0.95Tc), the critical field Hc⊥ of the nanowire exhibits a down-turn curvature nonlinear temperature dependence while the micro-bridge displays a linear temperature dependence. The nonlinear behavior of Hc⊥ in the nanowire is believed to be due to the fact that in the vicinity of Tc the coherence length becomes larger than the line width. Additionally, the localization of carriers in the nanowire could also contribute to the nonlinear behavior. The resistive transitions could be described by the phase-slip model for quasi-one-dimensional system. Moreover, the hysteresis in I-V curve of the meander nanowires can be illustrated by a simple model of localized normal hotspot maintained by Joule heating.
Keywords:  Nb meander nanowire      critical temperature      critical field      critical current  
Received:  07 April 2014      Revised:  23 April 2014      Accepted manuscript online: 
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  74.25.F- (Transport properties)  
  81.16.Rf (Micro- and nanoscale pattern formation)  
  81.07.Gf (Nanowires)  
Fund: Project supported by the National Basic Research Program of China (973 Program) (Grant Nos. 2011CBA00106 and 2009CB929102) and the National Natural Science Foundation of China (Grant Nos. 11104333 and 10974243).
Corresponding Authors:  Zheng Dong-Ning     E-mail:  dzheng@iphy.ac.cn

Cite this article: 

Zhao Lu (赵璐), Jin Yi-Rong (金贻荣), Li Jie (李洁), Deng Hui (邓辉), Zheng Dong-Ning (郑东宁) Fabrication and properties of the meander nanowires based on ultra-thin Nb films 2014 Chin. Phys. B 23 087402

[1] Hadfield R H 2009 Nat. Photonics 3 696
[2] Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C and Sobolewski R 2001 Appl. Phys. Lett. 79 705
[3] Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P and Nam S W 2013 Nat. Photonics 7 210
[4] Zhang C and Jiao R Z 2012 Chin. Phys. B 21 120306
[5] Zen N, Suzuki K, Shiki S and Ohkubo M 2009 Physica C 469 1684
[6] Parlato L, Latempa R, Peluso G, Pepe G P, Cristiano R and Sobolewski R 2005 Supercond. Sci. Technol. 18 1244
[7] Annunziata A J, Frydman A, Reese M O, Frunzio L, Rooks M and Prober D E 2006 Advanced Photon Counting Techniques 6372 63720V
[8] Fujii G, Fukuda D, Numata T, Yoshizawa A, Tsuchida H, Inoue S and Zama T 2009 QuantumCom LNICST 36 220
[9] Annunziata A J, Santavicca D F, Chudow J D, Frunzio L, Rooks M J, Frydman A and Prober D E 2009 IEEE T Appl. Supercond. 19 327
[10] Asada Y J and Nosé H 1969 J. Phys. Soc. Jpn. 26 347
[11] Delacour C, Ortega L, Faucher M, Crozes T, Fournier T, Pannetier B and Bouchiat V 2011 Phys. Rev. B 83 144504
[12] Kim Y W, Kahng Y H, Choi J H and Lee S G 2009 IEEE T Appl. Supercond. 19 2649
[13] Rogachev A and Bezryadin A 2003 Appl. Phys. Lett. 83 512
[14] Tettamanzi G C, Pakes C I, Potenza A, Rubanov S, Marrows C H and Prawer S 2009 Nanotechnology 20 465302
[15] Bulaevskii L N, Graf M J and Kogan V G 2012 Phys. Rev. B 85 014505
[16] Herder C H 2009 "Study of Ultranarrow Superconducting NbN Nanowires and Nanowires under Strong Magnetic Field for Photon Detection" (BS Dissertation) (Cambridge: Massachusetts Institute of Technology)
[17] Tinkham M 1996 Introduction to Superconductivity, 2nd edn. (Singapore: McGraw-Hill) pp. 141-143
[18] Quateman J H 1986 Phys. Rev. B 34 1948
[19] Annunziata A J 2010 "Single-Photon Detection, Kinetic Inductance and Non-equilibrium Dynamics in Niobium and Niobium Nitride Superconducting Nanowires" (Ph. D. Dissertation) (New Haven: Yale University)
[20] Costa A T Jr, Muniz R B, Jisang Hong and Wu R Q 2004 Europhys. Lett. 67 254
[21] Bezryadin A 2008 J. Phys.: Condens. Matter 20 043202
[22] Lau C N, Markovic N, Bockrath M, Bezryadin A and Tinkham M 2001 Phys. Rev. Lett. 19 217003
[23] Little W A 1967 Phys. Rev. 156 396
[24] Kitaygorsky J 2008 "Photon and Dark Counts in NbN Superconducting Single-Photon Detectors and Nanostripes" (Ph. D. Dissertation) (Rochester: University of Rochester)
[25] Skocpol W J, Beasley M R and Tinkham M 1974 J. Appl. Phys. 45 4054
[26] Stockhausen A, Il'in K, Siegel M, Södervall U and Jedrasik P 2012 Supercond. Sci. Technol. 25 035012
[1] In-plane current-induced magnetization reversal of Pd/CoZr/MgO magnetic multilayers
Jing Liu(刘婧), Caiyin You(游才印), Li Ma(马丽), Yun Li(李云), Ling Ma(马凌), and Na Tian(田娜). Chin. Phys. B, 2022, 31(12): 127502.
[2] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[3] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets"
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[4] Investigation of dimensionality in superconducting NbN thin film samples with different thicknesses and NbTiN meander nanowire samples by measuring the upper critical field
Mudassar Nazir, Xiaoyan Yang(杨晓燕), Huanfang Tian(田焕芳), Pengtao Song(宋鹏涛), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Xueyi Guo(郭学仪), Yirong Jin(金贻荣), Lixing You(尤立星), Dongning Zheng(郑东宁). Chin. Phys. B, 2020, 29(8): 087401.
[5] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[6] Different behavior of upper critical field in Fe1-xSe single crystals
Shunli Ni(倪顺利), Wei Hu(胡卫), Peipei Shen(沈沛沛), Zhongxu Wei(魏忠旭), Shaobo Liu(刘少博), Dong Li(李栋), Jie Yuan(袁洁), Li Yu(俞理), Kui Jin(金魁), Fang Zhou(周放), Xiaoli Dong(董晓莉), Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2019, 28(12): 127401.
[7] Vortex pinning and rectification effect in a nanostructured superconducting film with a square array of antidot triplets
An He(何安), Cun Xue(薛存), Youhe Zhou(周又和). Chin. Phys. B, 2018, 27(5): 057402.
[8] Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), Ming He(何明). Chin. Phys. B, 2018, 27(5): 057403.
[9] Distinction between critical current effects and intrinsic anomalies in the point-contact Andreev reflection spectra of unconventional superconductors
Ge He(何格), Zhong-Xu Wei(魏忠旭), Jérémy Brisbois, Yan-Li Jia(贾艳丽), Yu-Long Huang(黄裕龙), Hua-Xue Zhou(周花雪), Shun-Li Ni(倪顺利), Alejandro V Silhanek, Lei Shan(单磊), Bei-Yi Zhu(朱北沂), Jie Yuan(袁洁), Xiao-Li Dong(董晓莉), Fang Zhou(周放), Zhong-Xian Zhao(赵忠贤), Kui Jin(金魁). Chin. Phys. B, 2018, 27(4): 047403.
[10] Superconductivity with peculiar upper critical fields in quasi-one-dimensional Cr-based pnictides
Guang-Han Cao(曹光旱), Zeng-Wei Zhu(朱增伟). Chin. Phys. B, 2018, 27(10): 107401.
[11] Synthesis of large FeSe superconductor crystals via ion release/introduction and property characterization
Dongna Yuan(苑冬娜), Yulong Huang(黄裕龙), Shunli Ni(倪顺利), Huaxue Zhou(周花雪), Yiyuan Mao(毛义元), Wei Hu(胡卫), Jie Yuan(袁洁), Kui Jin(金魁), Guangming Zhang(张广铭), Xiaoli Dong(董晓莉), Fang Zhou(周放). Chin. Phys. B, 2016, 25(7): 077404.
[12] Effect of exchange interaction in ferromagnetic superlattices: A Monte Carlo study
R Masrour, A Jabar. Chin. Phys. B, 2016, 25(10): 107502.
[13] Characteristics of Nb/Al superconducting tunnel junctions fabricated using ozone gas
Masahiro Ukibe, Go Fujii, Masataka Ohkubo. Chin. Phys. B, 2015, 24(9): 093301.
[14] Study of Nb/NbxSi1-x/Nb Josephson junction arrays
Cao Wen-Hui (曹文会), Li Jin-Jin (李劲劲), Zhong Yuan (钟源), He Qing (贺青). Chin. Phys. B, 2015, 24(12): 127402.
[15] Formation of epitaxial Tl2Ba2Ca2Cu3O10 superconducting films by dc-magnetron sputtering and triple post-annealing method
Xie Wei (解伟), Wang Pei (王培), Ji Lu (季鲁), Ge De-Yong (葛德永), Du Jia-Nan (杜佳男), Gao Xiao-Xin (高晓昕), Liu Xin (刘欣), Song Feng-Bin (宋凤斌), Hu Lei (胡磊), Zhang Xu (张旭), He Ming (何明), Zhao Xin-Jie (赵新杰). Chin. Phys. B, 2014, 23(7): 077401.
No Suggested Reading articles found!