|
|
Effects of V/Ⅲ ratio on a-plane GaN epilayers with an InGaN interlayer |
Wang Jian-Xia (王建霞), Wang Lian-Shan (汪连山), Yang Shao-Yan (杨少延), Li Hui-Jie (李辉杰), Zhao Gui-Juan (赵桂娟), Zhang Heng (张恒), Wei Hong-Yuan (魏鸿源), Jiao Chun-Mei (焦春美), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国) |
Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract The effects of V/Ⅲ growth flux ratio on a-plane GaN films grown on r-plane sapphire substrates with an InGaN interlayer are investigated. The surface morphology, crystalline quality, strain states, and density of basal stacking faults were found to depend heavily upon the V/Ⅲ ratio. With decreasing V/Ⅲ ratio, the surface morphology and crystal quality first improved and then deteriorated, and the density of the basal-plane stacking faults also first decreased and then increased. The optimal V/Ⅲ ratio growth condition for the best surface morphology and crystalline quality and the smallest basal-plane stacking fault density of a-GaN films are found. We also found that the formation of basal-plane stacking faults is an effective way to release strain.
|
Received: 18 July 2013
Revised: 13 August 2013
Accepted manuscript online:
|
PACS:
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
68.55.A-
|
(Nucleation and growth)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91233111, 61274041, 11275228, 61006004, and 61076001), the Special Funds for Major State Basic Research Project (973 Program) of China (Grant No. 2012CB619305), the 863 High Technology R & D Program of China (Grant No. 2011AA03A101) and the Special Fund for LED Industrial Development of Guangdong Province of China (Grant No. 2012A080302003). |
Corresponding Authors:
Wang Jian-Xia, Wang Lian-Shan, Yang Shao-Yan
E-mail: ls-wang@semi.ac.cn;ls-shan@semi.ac.cn;sh-yyang@semi.ac.cn
|
About author: 68.37.Ps; 68.55.A-; 78.55.Cr; 81.15.Gh |
Cite this article:
Wang Jian-Xia (王建霞), Wang Lian-Shan (汪连山), Yang Shao-Yan (杨少延), Li Hui-Jie (李辉杰), Zhao Gui-Juan (赵桂娟), Zhang Heng (张恒), Wei Hong-Yuan (魏鸿源), Jiao Chun-Mei (焦春美), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国) Effects of V/Ⅲ ratio on a-plane GaN epilayers with an InGaN interlayer 2014 Chin. Phys. B 23 026801
|
[1] |
Bermardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024
|
[2] |
Sun Q, Yerino C D, Ko T S, Cho Y S, Lee I H, Han J and Coltrin M E 2008 J. Appl. Phys. 104 093523
|
[3] |
Hollander J L, Kappers M J, McAleese C and Humphreys C J 2008 Appl. Phys. Lett. 92 101104
|
[4] |
Zakharov D N, Liliental-weber Z, Wagner B, Reitmeier Z J, Preble E A and Davis R F 2005 Phys. Rev. B 71 235334
|
[5] |
Liu R, Bell A, Ponce F A, Chen C Q, Yang J W and Khan M A 2005 Appl. Phys. Lett. 86 021908
|
[6] |
Gühne T, Bougrioua Z, Vennégués P, Leroux M and Albrecht M 2007 J. Appl. Phys. 101 113101
|
[7] |
Wu Z H, Fischer A M, Ponce F A, Bastek B, Christen J, Wernicke T, Weyers M and Kneissl M 2008 Appl. Phys. Lett. 92 171904
|
[8] |
Sun Q, Kong B H, Yerino C D, Ko T S, Leung B, Cho H K and Han J 2009 J. Appl. Phys. 106 123519
|
[9] |
Tian Y, Dai J N, Xiong H, Zheng G, Ryu M, Fang Y Y and Chen C Q 2012 Chin. Phys. Lett 29 088101
|
[10] |
Xu X Q, Guo Y, Liu X L, Liu J M and Song H P 2011 Cryst. Eng. Comm. 13 1580
|
[11] |
Li Z W, Wei H Y, Xu X Q, Zhao G J, Liu X L, Yang S Y, Zhu Q S and Wang Z G 2012 J. Cryst. Growth 348 10
|
[12] |
Ni X, Fu Y, Moon Y T, Biyikli N and Morko H 2006 J. Cryst. Growth 290 166
|
[13] |
Ko T S, Wang T C, Gao T C, Chen H G, Huang G S, Lu T C, Kuo H C and Wang S C 2007 J. Cryst. Growth 300 308
|
[14] |
Miyagawa R, Narukawa M, Ma B, Miyake H and Hiramatsu K 2008 J. Cryst. Growth 310 4979
|
[15] |
Xie Z L, Li Y, Liu B, Zhang R, Xiu X Q, Chen P and Zheng Y L 2011 Chin. Phys. B 20 106801
|
[16] |
Mclaurin M B, Hirai A, Young E, Wu F and Speck J S 2008 Jpn. J. Appl. Phys. 47 5429
|
[17] |
Sun Q, Ko T S, Yerino C D, Zhang Y, Lee I H, Han J, Lu T C, Kuo H C and Wang S C 2009 Jpn. J. Appl. Phys. 48 071002
|
[18] |
Zhao G J, Yang S Y, Liu G P, Liu C B, Sang L, Gu C Y, Liu X L, Wei H Y, Zhu Q S and Wang Z G 2013 Chin. Phys. Lett. 30 098102
|
[19] |
Laskar M R, Ganguli T, Rahman A A, Mukherjee A, Hatui N, Gokhale M R and Bhattacharya A 2011 J. Appl. Phys. 109 013107
|
[20] |
Ghosh S, Misra P and Grahn H T 2005 J. Appl. Phys. 98 026105
|
[21] |
Kong B H, Cho H K, Song K M and Yoon D H 2010 J. Cryst. Growth 313 8
|
[22] |
Liu Z Y, Xu S R, Zhang J C, Xue J S, Xue X Y, Niu M T and Hao Y 2012 J. Cryst. Growth 343 122
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|