INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Stereodynamics in reaction O(1D)+CH4→OH+CH3 |
Sha Guang-Yan (沙广燕)a, Yuan Jiu-Chuang (袁久闯)b, Meng Chang-Gong (孟长功)a, Chen Mao-Du (陈茂笃)b |
a School of Chemistry, Experimental Center of Chemistry, Dalian University of Technology, Dalian 116024, China;
b School of Physics and Optoelectronic Technology, and College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract A theoretical study of the stereodynamics for reaction O(1D)+CH4→OH+CH3 has been carried out using the quasiclassical trajectory method (QCT) on a potential energy surface structured by Gonzalez et al. The integral cross sections (ICSs), differential cross sections (DCSs) and product rotational angular momentum polarization have been calculated. With the collision energy increasing, the ICS decreases. There is no threshold energy, because no barrier is found on the minimum energy path. The DCS results show that the backward and forward scatterings exist at the same time. With the collision energy increasing, the dominant rotation of the product changes from the right-handed direction to the left-handed direction in planes parallel to the scattering plane. In the isotopic effect study, the decrease of the mass factor weakens the polarization degree of the rotational angular momentum vectors of the products.
|
Received: 22 May 2013
Revised: 08 June 2013
Accepted manuscript online:
|
PACS:
|
82.30.Cf
|
(Atom and radical reactions; chain reactions; molecule-molecule reactions)
|
|
82.20.Fd
|
(Collision theories; trajectory models)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21271037 and 10974023). |
Corresponding Authors:
Meng Chang-Gong, Chen Mao-Du
E-mail: cgmeng@dlut.edu.cn;mdchen@dlut.edu.cn
|
Cite this article:
Sha Guang-Yan (沙广燕), Yuan Jiu-Chuang (袁久闯), Meng Chang-Gong (孟长功), Chen Mao-Du (陈茂笃) Stereodynamics in reaction O(1D)+CH4→OH+CH3 2014 Chin. Phys. B 23 018202
|
[1] |
Blitz M A, Dillon T J, Heard D E, Pilling M J and Trought I D 2004 Phys. Chem. Chem. Phys. 6 2162
|
[2] |
Lin J J, Lee Y T and Yang X 1998 J. Chem. Phys. 109 2975
|
[3] |
Lin J J, Harich S, Lee Y T and Yang X 1999 J. Chem. Phys. 110 10821
|
[4] |
Lin J J, Shu J, Lee Y T and Yang X 2000 J. Chem. Phys. 113 5287
|
[5] |
Miller C C, van Zee R D and Stephenson J C 2001 J. Chem. Phys. 114 1214
|
[6] |
Shuai Q, Pan H L, Yang J Y, Zhang D, Jiang B, Dai D X and Yang X M 2012 J. Phys. Chem. Lett. 3 1310
|
[7] |
Gonzalez M, Hernando J, Banos I and Sayos R 1999 J. Chem. Phys. 111 8913
|
[8] |
Gonzalez M, Hernando J, Puyuelo M P and Sayos R 2000 J. Chem. Phys. 113 6748
|
[9] |
Gonzalez M, Puyuelo M P, Hernando J, Sayos R, Enriquez P A, Guallar J and Banos I 2000 J. Phys. Chem. A 104 521
|
[10] |
Chang A H H and Lin S H 2004 Chem. Phys. Lett. 384 229
|
[11] |
Chang A H H and Lin S H 2002 Chem. Phys. Lett. 363 175
|
[12] |
Yu H G and Muckerman J T 2004 J. Phys. Chem. A 108 8615
|
[13] |
Kohguchi H, Ogi Y and Suzuki T 2011 Phys. Chem. Chem. Phys. 13 8371
|
[14] |
Kohguchi H, Ogi Y and Suzuki T 2008 Phys. Chem. Chem. Phys. 10 7222
|
[15] |
Yang X M 2006 Phys. Chem. Chem. Phys. 8 205
|
[16] |
Hancock G, Morrison M and Saunders M 2005 J. Photoch. Photobio. A 176 191
|
[17] |
Chen H B, Thweatt W D, Wang J J, Glass G P and Curl R F 2005 J. Phys. Chem. A 109 2207
|
[18] |
Hernando J, Millan J, Sayos R and Gonzalez M 2003 J. Chem. Phys. 119 9504
|
[19] |
Sayos R, Hernando J, Puyuelo M P, Enriquez P A and Gonzalez M 2002 Phys. Chem. Chem. Phys. 4 288
|
[20] |
Saueressig G, Crowley J N, Bergamaschi P, Bruhl C, Brenninkmeijer C A M and Fischer H 2001 J. Geophys. Res-Atmos. 106 23127
|
[21] |
Ogi Y, Kohguchi H and Suzuki T 2013 Phys. Chem. Chem. Phys. 15 12946
|
[22] |
Ausfelder F, Hippler H and Striebel F 2000 Z. Phys. Chem. 214 403
|
[23] |
Wada S and Obi K 1998 J. Phys. Chem. A 102 3481
|
[24] |
Shuai Q, Pan H, Yang J, Zhang D, Jiang B, Dai D and Yang X 2012 J. Chem. Phys. 137 224301
|
[25] |
Barnwell J D, Loeser J G and Herschbach D R 1983 J. Phys. Chem. 87 2781
|
[26] |
Mcclelland G M and Herschbach D R 1979 J. Phys. Chem. 83 1445
|
[27] |
Case D A and Herschbach D R 1975 Mol. Phys. 30 1537
|
[28] |
Fano U and Macek J H 1973 Rev. Mod. Phys. 45 553
|
[29] |
Orrewing A J and Zare R N 1994 Annu. Rev. Phys. Chem. 45 315
|
[30] |
Troya D, Millan J, Banos I and Gonzalez M 2004 J. Chem. Phys. 120 5181
|
[31] |
Liu Y F, Gao Y L, Zhai H S, Shi D H and Sun J F 2009 Int. J. Mol. Sci. 10 2146
|
[32] |
Martinez R, Enriquez P A, Puyuelo M P and Gonzalez M 2012 J. Phys. Chem. A 116 5026
|
[33] |
Gonzalez M, Hernando J, Millan J and Sayos R 1999 J. Chem. Phys. 110 7326
|
[34] |
Troya D, Millan J, Banos I and Gonzalez M 2002 J. Chem. Phys. 117 5730
|
[35] |
Gauss A 1976 J. Chem. Phys. 65 4365
|
[36] |
Cheng D H, Yuan J C, Yang T G and Chen M D 2013 Chin. Phys. B 22 068202
|
[37] |
Li Y Q, Yuan J C, Chen M D, Ma F C and Sun M T 2013 J. Comput. Chem. 34 1686
|
[38] |
Li Y Q, Song Y Z, Song P, Li Y Z, Ding Y, Sun M T and Ma F C 2012 J. Chem. Phys. 136 194705
|
[39] |
Shaferray N E, Orrewing A J and Zare R N 1995 J. Phys. Chem. 99 7591
|
[40] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[41] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
[42] |
Brouard M, Lambert H M, Rayner S P and Simons J P 1996 Mol. Phys. 89 403
|
[43] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[44] |
Duan L H, Zhang W Q, Xu X S, Cong S L and Chen M D 2009 Mol. Phys. 107 2579
|
[45] |
Yang T G, Yuan J C, Cheng D H and Chen M D 2013 Commn. Comput. Chem. 1 15
|
[46] |
Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
|
[47] |
Zhang W Q and Chen M D 2009 J. Theor. Comput. Chem. 8 1131
|
[48] |
Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|