Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 120601    DOI: 10.1088/1674-1056/24/12/120601
GENERAL Prev   Next  

Border effect-based precise measurement of any frequency signal

Bai Li-Na (白丽娜), Ye Bo (叶波), Xuan Mei-Na (宣美娜), Jin Yu-Zhen (金瑜珍), Zhou Wei (周渭)
Department of Measurement and Instrumentation, Xidian University, Xi'an 710071, China
Abstract  Limited detection resolution leads to fuzzy areas during the measurement, and the discrimination of the border of a fuzzy area helps to use the resolution stability. In this way, measurement precision is greatly improved, hence this phenomenon is named the border effect. The resolution fuzzy area and its application should be studied to realize high-resolution measurement. During the measurement of any frequency signal, the fuzzy areas of phase-coincidence detection are always discrete and irregular. In this paper the difficulty in capturing the border information of discrete fuzzy areas is overcome and extra-high resolution measurement is implemented. Measurement precision of any frequency-signal can easily reach better than 1× 10-11/s in a wide range of frequencies, showing the great importance of the border effect. An in-depth study of this issue has great significance for frequency standard comparison, signal processing, telecommunication, and fundamental subjects.
Keywords:  border effect      fuzzy area      measurement precision      resolution stability  
Received:  13 July 2015      Revised:  18 August 2015      Accepted manuscript online: 
PACS:  06.30.Ft (Time and frequency)  
  07.50.Qx (Signal processing electronics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10978017 and 61201288), the Natural Science Foundation of Research Plan Projects of Shaanxi Province, China (Grant No. 2014JM2-6128), and the Sino-Poland Science and Technology Cooperation Projects (Grant No. 36-33).
Corresponding Authors:  Bai Li-Na     E-mail:  lnbai@mail.xidian.edu.cn

Cite this article: 

Bai Li-Na (白丽娜), Ye Bo (叶波), Xuan Mei-Na (宣美娜), Jin Yu-Zhen (金瑜珍), Zhou Wei (周渭) Border effect-based precise measurement of any frequency signal 2015 Chin. Phys. B 24 120601

[1] Diddams S A, Bergquist J C, Jefferts S R and Oates C W 2004 Science 306 1318
[2] Antonio D, Zanette D H and López D 2012 Nat. commun. 3 806
[3] Escher B M, de Matos Filho R L and Davidovich L 2011 Nat. Phys. 7 406
[4] Sturm S, Köhler F, Zatorski J, Wagner A, Harman Z, Werth G, Quint W, Keitel C H and Blaum K 2014 Nature 506 467
[5] Schröder G F, Levitt M and Brunger A T 2010 Nature 464 1218
[6] Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C and Wang L J 2012 Sci. Rep. 2 556
[7] Zhou W, Zhou H, and Fan W J 2008 Proceedings of the IEEE International Frequency Control Symposium, May 19-21, 2008, Honolulu, USA, p. 468
[8] Du B Q and Zhou W 2009 Chin. Phys. Lett. 26 100601
[9] Hernández-Balbuena D, Sergiyenko O, Tyrsa V and Burtseva L 2008 Proceedings of the IEEE-IES International Symposium on Industrial Electronics, June 30-July 2, 2008, Cambridge, United Kingdom, p. 1452
[10] Hernández-Balbuena D, Sergiyenko O, Tyrsa V and Burtseva L, 2008 Proceedings of the 16th IMEKO TC 4 Symposium Exploring New Frontiers of Instrumentation and Methods for Electrical and Electronic Measurements, September 22-24, 2008, Florence, Italy, p. 367
[11] Zhou W, Li Z Q, Bai L N, Xuan Z Q, Chen F X, Yu J G, Gao J N, Miao M, Dong S F, Song H M, Wei Z and Ye Y X 2014 Chin. Phys. Lett. 31 100602
[12] Ye Y X, Xuan Z Q, Gu J S and Xuan Y 2014 Chin. Phys. B 23 120601
[13] Dubé P, Madej A A, Zhou Z and Bernard J E 2013 Phys. Rev. A 87 023806
[14] Zamanizadeh E, Gomes J and Bioucas-Dias J M 2012 Proceedings of OCEANS, October 14-19, 2012, Virginia, USA, p. 1
[15] Wang Y Q 2005 Journal of Astronautic Metrology and Measurement26 764
[16] Zhou W 1992 Proceedings of the IEEE International Frequency Control Symposium, May 27-29, 1992, Hershey, PA, USA, p. 270
[17] Bai L N, Su X, Zhou W and Ou X J 2015 Rev. Sci. Instrum. 86 015106
[1] ADC border effect and suppression of quantization error in the digital dynamic measurement
Li-Na Bai(白丽娜), Hai-Dong Liu(刘海东), Wei Zhou(周渭), Yong Zhang(张勇), Hong-Qi Zhai(翟鸿启), Zhen-Jian Cui(崔震健), Ming-Ying Zhao(赵明英), Xiao-Qian Gu(谷小倩), Bei-Ling Liu(刘蓓玲), Li-Bei Huang(黄李贝). Chin. Phys. B, 2017, 26(9): 090601.
[2] A method for phase reconstruction in the optical three-dimensional shape measurement
Qiao Nao-Sheng (乔闹生), He Zhi (贺志). Chin. Phys. B, 2012, 21(9): 094203.
No Suggested Reading articles found!