Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 114206    DOI: 10.1088/1674-1056/22/11/114206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantum interferometer with two-mode squeezed vacuum:Ŝz2 measurement

Zhang Yuan-Ming (张渊明), Li Xin-Wei (李昕伟), Jin Guang-Ri (金光日)
Department of Physics, Beijing Jiaotong University, Beijing 100044, China
Abstract  Quantum interferometric strategy with input two-mode squeezed vacuum [Phys. Rev. Lett. 104 103602] is reexamined for both parity and Ŝz2 measurements. Unlike the previous scheme, we find that phase sensitivity obtained with the Ŝz2 measurement is minimized at phase origin, which may be useful to estimate a small phase shift at high precision. For the phase deviated from zero, the sensitivity increases more slowly than that of the parity detection.
Keywords:  Mach–Zehnder interferometer      phase sensitivity  
Received:  17 March 2013      Revised:  08 April 2013      Accepted manuscript online: 
PACS:  42.50.St (Nonclassical interferometry, subwavelength lithography)  
  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174028), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Crant Nos. 2011JBZ013 and 2012YJS117), the Program for New Century Excellent Talents in University of Ministry of Education of China (Crant No. NCET-11-0564), and the National Innovation Experiment Program for University Students, China (Grant Nos. 1270021 and 1270037).
Corresponding Authors:  Jin Guang-Ri     E-mail:  grjin@bjtu.edu.cn

Cite this article: 

Zhang Yuan-Ming (张渊明), Li Xin-Wei (李昕伟), Jin Guang-Ri (金光日) Quantum interferometer with two-mode squeezed vacuum:Ŝz2 measurement 2013 Chin. Phys. B 22 114206

[1] Caves C M 1981 Phys. Rev. D 23 1693
[2] Yurke B, MacCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
[3] Holland M J and Burnett K 1993 Phys. Rev. Lett. 71 1355
[4] Wineland D J, Bollinger J J and Itano W M 1994 Phys. Rev. A 50 67
[5] Duan L M and Guo G C 1995 Chin. Phys. 4 801
[6] Leibfried D, Barrett M D, Schaetz T, Britton J, Chiaverini J, Itano W M, Jost J D, Langer C and Wineland D J 2004 Science 304 1476
[7] Mitchell M W, Landeen J S and Steinberg A M 2004 Nature 429 161
[8] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[9] Zhang Y R, Jin G R, Cao J P, Liu W M and Fan H 2013 J. Phys. A 46 035302
[10] Luo K H, Huang B Q, Zhang W M and Wu L A 2012 Chin. Phys. Lett. 29 074216
[11] Bollinger J J, ItanoWMandWineland D J 1996 Phys. Rev. A 54 R4649
[12] Gerry C C 2000 Phys. Rev. A 61 043811
[13] Gerry C C and Campos R A 2001 Phys. Rev. A 64 063814
[14] Gao Y, Anisimov P M, Wildfeuer C F, Luine J, Lee H and Dowling J P 2010 J. Opt. Soc. Am. B 27 A170
[15] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602
[16] Han Y, Wu C W, Wu W, Chen P X and Li C Z 2009 Chin. Phys. B 18 3215
[17] Sanders B C and Milburn G J 1995 Phys. Rev. Lett. 75 2944
[18] Kim T, Pfister O, Holland M J, Noh J and Hall J L 1998 Phys. Rev. A 57 4004
[19] Liu Y C, Jin G R and You L 2010 Phys. Rev. A 82 045601
[20] Jin G R, Liu Y C and You L 2011 Front. Phys. 6 251
[21] Jin G R, An Y, Yan T and Lu Z S 2010 Phys. Rev. A 82 063622
[22] Rodríguez M, Clark S R and Jaksch D 2007 Phys. Rev. A 75 011601
[23] Rodríguez M, Clark S R and Jaksch D 2008 Phys. Rev. A 77 043613
[24] Lücke B, Scherer M, Kruse J, Pezzé L, Deuretzbacher F, Hyllus P, Topic O, Peise J, Ertmer W, Arlt J, Santos L, Smerzi A and Klempt C 2011 Science 334 11
[25] Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601
[26] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) Chap. VIII
[27] Holevo A S 1982 Probabilistic and Statistical Aspect of Quantum Theory (Pisa: North-Holland Press)
[28] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[29] Pezzé L and Smerzi A 2009 Phys. Rev. Lett. 102 100401
[1] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[2] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[3] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[4] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[5] Phase sensitivity of two nonlinear interferometers with inputting entangled coherent states
Chao-Ping Wei(魏朝平), Xiao-Yu Hu(胡小玉), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2016, 25(4): 040601.
[6] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
No Suggested Reading articles found!