ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Energy transfer in solid-state dye lasers based on methyl methacrylate co-doped with sulforhodamine B and crystal violet |
R. G. Geethu Mania, M. Basheer Ahamedb |
a Department of Physics, KCG College of Technology, Chennai 600097; Research Centre, Bharathiar University, Coimbatore 641046, India; b Department of Physics, B.S. Abdur Rahman University, Chennai 600048, India |
|
|
Abstract Laser action in methyl methacrylate (MMA) co-doped with sulforhodamine B and crystal violet dyes was investigated. The dye mixture was incorporated into a solid polymeric matrix and was pumped by a 532-nm Nd:YAG laser. Distributed feedback dye laser (DFDL) action was induced in the dye mixture using a prism arrangement both in the donor and acceptor regions by an energy transfer mechanism. Theoretically, the characteristics of acceptor and donor DFDLs, and the dependence of their pulse widths and output powers on acceptor–donor concentrations and pump power, were studied. Experimentally, the output energy of DFDL was measured at the emission peaks of donor and acceptor dyes for different pump powers and different acceptor–donor concentrations. Tuning of the output wavelength was achieved by varying the period of the gain modulation of the laser medium. The laser wavelength showed continuous tunability from 563 nm to 648 nm.
|
Received: 24 February 2013
Revised: 15 May 2013
Accepted manuscript online:
|
PACS:
|
42.55.Mv
|
(Dye lasers)
|
|
42.55.Rz
|
(Doped-insulator lasers and other solid state lasers)
|
|
42.60.Rn
|
(Relaxation oscillations and long pulse operation)
|
|
Corresponding Authors:
M. Basheer Ahamed
E-mail: basheerahamed@bsauniv.ac.in
|
Cite this article:
R. G. Geethu Mani, M. Basheer Ahamed Energy transfer in solid-state dye lasers based on methyl methacrylate co-doped with sulforhodamine B and crystal violet 2013 Chin. Phys. B 22 114207
|
[1] |
Costela A, García-Moreno I, Sastre R, Coutts D W and Webb C E 2001 Appl. Phys. Lett. 79 452
|
[2] |
Hermes R E, Allik T H, Chandra S and Hutchinson J A 1993 Appl. Phys. Lett. 63 877
|
[3] |
Bornemann R, Lemmer U and Thiel E 2006 Opt. Lett. 31 1669
|
[4] |
Yu Y, Goto R, Omi S, Yamashita K, Watanabe H, Miyazaki M and Oki Y 2010 Opt. Express 18 22080
|
[5] |
Nhung T H, Canva M, Dao T T A, Chaput F, Brun A, Hung N D and Boilot J P 2003 Appl. Opt. 42 2213
|
[6] |
Yang Y, Wang M Q, Qian G D, Wang Z Y and Fan X P 2004 Opt. Mater. 24 621
|
[7] |
Aldag H R, Dolotov S M, Koldunov M F, Kravchenko Ya V, Manenkov A A, Pacheco D P, Reznichenko A V and Roskova G P 2000 Proc. SPIE 3929 133
|
[8] |
Rahn M D, King T A, Gorman A A and Hamblett I 1997 Appl. Opt. 36 5862
|
[9] |
Scott B J, Bartl M H, Wirnsberger G and Stucky G D 2003 J. Phys. Chem. A 107 5499
|
[10] |
García O, Sastre R, del Agua D, Costela A and García-Moreno I 2006 Chem. Mater. 18 601
|
[11] |
García O, Sastre R, del Agua D, Costela A, García-Moreno I, López Arbeloa F, Bañuelos Prieto J and López Arbeloa I 2007 J. Phys. Chem. C 111 1508
|
[12] |
Yang Y, Qian G D, Wang Z Y and Wang M Q 2002 Opt. Commun. 204 277
|
[13] |
Costela A, García-Moreno I, del Agua D, García O and Sastre R 2004 Appl. Phys. Lett. 85 2160
|
[14] |
Sastre R, Martin V, Garrido L, Chiara J L, Trastoy B, García O, Costela A and Garica-Moreno I 2009 Adv. Funct. Mater. 19 3307
|
[15] |
Watanabe H, Oki Y and Omatsu T 2009 Jpn. J. Appl. Phys. 48 112503
|
[16] |
Sen T, Jana S, Koner S and Patra A 2010 J. Phys. Chem. C 114 19667
|
[17] |
Duarte F J and James R O 2003 Opt. Lett. 28 2088
|
[18] |
Ahmad M, King T A, Ko D K, Cha B H and Lee J 2002 Opt. Commun. 203 327
|
[19] |
Tanaka N, Barashkov N, Heath J and Sisk W N 2006 Appl. Opt. 45 3846
|
[20] |
Yang Y, Turnbull G A and Samuel I D W 2008 Appl. Phys. Lett. 92 163306
|
[21] |
Vasdekis A E, Tsiminis G, Ribierre J C, L Faolain L O’, Krauss T F, Turnbull G A and Samuel I D 2006 Opt. Express 14 9211
|
[22] |
Sakata H and Takeuchi H 2008 Appl. Phys. Lett. 92 113310
|
[23] |
Sakata H, Yamashita K, Takeuchi H and Tomiki M 2008 Appl. Phys. B 92 243
|
[24] |
Oki Y, Sato H, Abe A, Watanabe H, Era M and Maeda M 2005 Jpn. J. Appl. Phys. 44 1759
|
[25] |
Chen F, Wang J, Ye C, Ni W H, Chan J, Yang Y and Lo D 2005 Opt. Express 13 1643
|
[26] |
Ye C, Wang J, Shi L and Lo D 2004 Appl. Phys. B 78 189
|
[27] |
Wang J, Ye C, Chen F, Shi L and Lo D 2005 J. Opt. A: Pure Appl. Opt. 7 261
|
[28] |
Lo D, Shi L, Wang J, Zhang G X and Zhu X L 2002 Appl. Phys. Lett. 81 2707
|
[29] |
Kogelnik H and Shank C V 1972 J. Appl. Phys. 43 2327
|
[30] |
Yu Y, Lin G, Xu H, Wang M and Qian G 2008 Opt. Commun. 281 5218
|
[31] |
Maeda M, Oki Y and Imamura K 1997 IEEE J. Quantum Electron. 33 2146
|
[32] |
Bor Z, Racz B and Muller A 1983 Appl. Opt. 22 3327
|
[33] |
Yang Y, Qian G D, Su D L, Wang Z Y and Wang M Q 2005 Chem. Phys. Lett. 402 389
|
[34] |
Sisk W N and Tanaka N 2006 Appl. Opt. 45 5385
|
[35] |
Cerdań L, Enciso E, Martín V, Banūelo J, Lopez-Arbeloa I, Costela A and García-Moreno I 2012 Nature Photonics 6 621
|
[36] |
Basheer Ahamed M and Palanisamy P K 2002 Opt. Commun. 213 67
|
[37] |
Basheer Ahamed M, Ramalingam A and Palanisamy P K 2003 J. Lumin. 105 9
|
[38] |
Basheer Ahamed M and Palanisamy P K 2003 J. Photochem. Photobio B 69 153
|
[39] |
Sailaja R and Bisht P B 2007 Organic Electronics 8 175
|
[40] |
Panoutsopoulos B, Ali M and Ahamed S A 1992 Appl. Opt. 31 1213
|
[41] |
Taneja L, Sharma A K and Singh R D 1994 Opt. Commun. 111 463
|
[42] |
Bor Z 1980 IEEE J. Quantum Electron. 16 517
|
[43] |
Basheer Ahamed M and Palanisamy P K 2003 Opt. quantum Electron. 35 705
|
[44] |
Lai D C, Dunn B and Zink J I 1996 Inorg. Chem. 35 2152
|
[45] |
Chandra S, Takeuchi W and Hartmann S R 1972 Appl. Phys. Lett. 21 144
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|