Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 110202    DOI: 10.1088/1674-1056/22/11/110202
GENERAL Prev   Next  

Exact solutions of nonlinear fractional differential equations by (G’/G)-expansion method

Ahmet Bekira, Özkan Günerb
a Eskisehir Osmangazi University, Art-Science Faculty, Department of Mathematics-Computer, Eskisehir, Turkey;
b Dumlupínar University, School of Applied Sciences, Department of Management Information Systems, Kutahya, Turkey
Abstract  In this paper, we use the fractional complex transform and the (G’/G)-expansion method to study the nonlinear fractional differential equations and find the exact solutions. The fractional complex transform is proposed to convert a partial fractional differential equation with Jumarie’s modified Riemann–Liouville derivative into its ordinary differential equation. It is shown that the considered transform and method are very efficient and powerful in solving wide classes of nonlinear fractional order equations.
Keywords:  (G’/G)-expansion method      time-fractional Burgers equation      fractional-order biological population model      space–time fractional Whitham–Broer–Kaup equations  
Received:  04 March 2013      Revised:  04 April 2013      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.70.Wz (Symbolic computation (computer algebra))  
  05.45.Yv (Solitons)  
  94.05.Fg (Solitons and solitary waves)  
Corresponding Authors:  Ahmet Bekir     E-mail:  abekir@ogu.edu.tr

Cite this article: 

Ahmet Bekir, Özkan Güner Exact solutions of nonlinear fractional differential equations by (G’/G)-expansion method 2013 Chin. Phys. B 22 110202

[1] Miller K S and Ross B 1993 An Introduction to the Fractional Calculus and Fractional Differential Equations (New York: Wiley)
[2] Podlubny I 1999 Fractional Differential Equations (California: Academic Press)
[3] Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier)
[4] Zhang S and Zhang H Q 2011 Phys. Lett. A 375 1069
[5] Tong B, He Y, Wei L and Zhang X 2012 Phys. Lett. A 376 2588
[6] Guo S, Mei L, Li Y and Sun Y 2012 Phys. Lett. A 376 407
[7] Lu B 2012 J. Math. Anal. Appl. 395 684
[8] Zheng B 2012 Commun. Theor. Phys. 58 623
[9] Gepreel K A and Omran S 2012 Chin. Phys. B 21 110204
[10] Wang M, Li X and Zhang J 2008 Phys. Lett. A 372 417
[11] Zhang S, Tong J L and Wang W 2008 Phys. Lett. A 372 2254
[12] Bekir A 2008 Phys. Lett. A 372 3400
[13] Zayed E M E and Gepreel K A 2009 J. Math. Phys. 50 013502
[14] Jumarie G 2006 Comput. Math. Appl. 51 1367
[15] Jumarie G 2009 Appl. Maths. Lett. 22 378
[16] Li Z B and He J H 2010 Math. Comput. Appl. 15 970
[17] Li Z B and He J H 2011 Nonlinear Sci. Lett. A Math. Phys. Mech. 2 121
[18] Inc M 2008 J. Math. Anal. Appl. 345 476
[19] El-Sayed A M A, Rida S Z and Arafa A A M 2009 Commun. Theor. Phys. 52 992
[20] Lu B 2012 Phys. Lett. A 376 2045
[1] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[5] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[6] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[7] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[8] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[9] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[10] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[11] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[12] Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China
Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2021, 30(12): 120202.
[13] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[14] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[15] Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise
Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷). Chin. Phys. B, 2021, 30(8): 080201.
No Suggested Reading articles found!