Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 107703    DOI: 10.1088/1674-1056/22/10/107703
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analysis of tensile strain enhancement in Ge nano-belts on an insulator surrounded by dielectrics

Lu Wei-Fang (卢卫芳), Li Cheng (李成), Huang Shi-Hao (黄诗浩), Lin Guang-Yang (林光杨), Wang Chen (王尘), Yan Guang-Ming (严光明), Huang Wei (黄巍), Lai Hong-Kai (赖虹凯), Chen Song-Yan (陈松岩)
Department of Physics, Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China
Abstract  Ge nano-belts with large tensile strain are considered as one of the promising materials for high carrier mobility metal-oxide-semiconductor transistors and efficient photonic devices. In this paper, we design the Ge nano-belts on an insulator surrounded by Si3N4 or SiO2 for improving their tensile strain and simulate the strain profiles by using the finite difference time domain (FDTD) method. The width and thickness parameters of Ge nano-belts on an insulator, which have great effects on the strain profile, are optimized. A large uniaxial tensile strain of 1.16% in 50-nm width and 12-nm thickness Ge nano-belts with the sidewalls protected by Si3N4 is achieved after thermal treatments, which would significantly tailor the band gap structures of Ge-nanobelts to realize the high performance devices.
Keywords:  Ge nano-belts      FDTD      Si3N4 or SiO2      uniaxially strain  
Received:  29 March 2013      Revised:  11 July 2013      Accepted manuscript online: 
PACS:  77.80.bn (Strain and interface effects)  
  78.20.Bh (Theory, models, and numerical simulation)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB933503 and 2013CB632103), the National Natural Science Foundation of China (Grant Nos. 61176092, 61036003, and 60837001), the Ph. D. Program Foundation of the Ministry of Education of China (Grant No. 20110121110025), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2010121056).
Corresponding Authors:  Li Cheng     E-mail:  lich@xmu.edu.cn

Cite this article: 

Lu Wei-Fang (卢卫芳), Li Cheng (李成), Huang Shi-Hao (黄诗浩), Lin Guang-Yang (林光杨), Wang Chen (王尘), Yan Guang-Ming (严光明), Huang Wei (黄巍), Lai Hong-Kai (赖虹凯), Chen Song-Yan (陈松岩) Analysis of tensile strain enhancement in Ge nano-belts on an insulator surrounded by dielectrics 2013 Chin. Phys. B 22 107703

[1] Liu C W, Lee M H, Chen M J, Lin I C and Lin C F 2000 Appl. Phys. Lett. 76 1516
[2] Hu S, Kawamura Y, Huang K C, Li Y, Marshall A F, Itoh K M, Brongersma M L and McIntyre P C 2012 Nano Lett. 12 1385
[3] Bouwes B M, Zielinski M, Witek B J, Zehender T, Bakkers E P and Zwiller V 2012 Nano Lett. 12 6206
[4] Presting H, Zinke T, Splett A, Kibbel H and Jaros M 1996 Appl. Phys. Lett. 69 2376
[5] Medeiros-Ribeiro G 1998 Science 279 353
[6] Nakamura Y, Watanabe K, Fukuzawa Y and Ichikawa M 2005 Appl. Phys. Lett. 87 133119
[7] Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K and Chen S Y 2012 Acta Phys. Sin. 61 036202 (in Chinese)
[8] Soref R 2006 IEEE J. Selected Topics in Quantum Electronics 12 1678
[9] Cheng T H, Peng K L, Ko C Y, Chen C Y, Lan H S, Wu Y R, Liu C W and Tseng H H 2010 Appl. Phys. Lett. 96 211108
[10] Van de Walle C 1989 Phys. Rev. B 39 1871
[11] Jain J R, Hryciw A, Baer T M, Miller D A B, Brongersma M L and Howe R T 2012 Nat. Photon. 6 398
[12] Li C, Chen Y H, Zhou Z, Lai H K and Chen S Y 2009 Appl. Phys. Lett. 95 251102
[13] Liu J F, Sun X C, Becla P, Kimerling L C and Michel J 2008 Proceedings of 5th IEEE International Conference on Group IV Photonics, September, 2008, Serrento, Italy, pp. 16-18
[14] Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J and Nishi Y 2009 Opt. Express 17 10019
[15] Huo Y, Lin H, Yang R, Makarova M, Li M, Chen R, Kamins T I, Vuckovic J and Harris J S 2009 Proceedings of 6th IEEE International Conference on Group IV Photonics, June, 2009, San Francisco, CA, USAGROUP4.2009.5338361
[16] Boztug C, Chen F, Sanchez-Perez J R, Sudradjat F F, Paskiewicz D M, Jacobson R B, Lagally M G and Paiella R 2011 Conference of OSA on Quantum Electronics and Laser Science, May, 2011, Baltimore, MD, USA PDPA2
[17] Nam D, Sukhdeo D, Roy A, Balram K, Cheng S L, Huang K C Y, Yuan Z, Brongersma M, Nishi Y, Miller D and Saraswat K 2011 Opt. Express 19 25866
[18] Tezuka T, Sugiyama N and Takagi S 2001 Appl. Phys. Lett. 79 1798
[19] Jain J R, Ly-Gagnon D S, Balram K C, White J S, Brongersma M L, Miller D A B and Howe R T 2011 Opt. Mater. Express 1 1121
[20] Hoshi Y, Sawano K, Hamaya K, Miyao M and Shiraki Y 2012 Appl. Phys. Express 5 015701
[21] Huang S H, Lu W F, Li C, Huang W, Lai H K and Chen S Y 2013 Opt. Express 21 640
[22] Yeo Y C and Sun J 2005 Appl. Phys. Lett. 86 023103
[23] Cannon D D, Liu J, Ishikawa Y, Wada K, Danielson D T, Jongthammanurak S, Michel J and Kimerling L C 2004 Appl. Phys. Lett. 84 906
[24] Slack G A and Bartram S F 1975 J. Appl. Phys. 46 89
[25] Jiang J Z, Lindelov H, Gerward L, Ståhl K, Recio J M, Mori-Sanchez P, Carlson S, Mezouar M, Dooryhee E, Fitch A and Frost D J 2002 Phys. Rev. B 65 161202
[26] Tada H, Kumpel A E, Lathrop R E, Slanina J B, Nieva P, Zavracky P, Miaoulis I N and Wong P Y 2000 J. Appl. Phys. 87 4189
[27] Zhang F, Crespi V H and Zhang P 2009 Phys. Rev. Lett. 102 156401
[1] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[2] Coupling analysis of transmission lines excited by space electromagnetic fields based on time domain hybrid method using parallel technique
Zhi-Hong Ye(叶志红), Xiao-Lin Wu(吴小林), Yao-Yao Li(李尧尧). Chin. Phys. B, 2020, 29(9): 090701.
[3] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[4] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
[5] New hybrid FDTD algorithm for electromagnetic problem analysis
Xin-Bo He(何欣波), Bing Wei(魏兵), Kai-Hang Fan(范凯航), Yi-Wen Li(李益文), Xiao-Long Wei(魏小龙). Chin. Phys. B, 2019, 28(7): 074102.
[6] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[7] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
[8] FDTD simulation study of size/gap and substrate-dependent SERS activity study of Au@SiO2 nanoparticles
Jing-Liang Yang(杨晶亮), Ruo-Ping Li(李若平), Jun-He Han(韩俊鹤), Ming-Ju Huang(黄明举). Chin. Phys. B, 2016, 25(8): 083301.
[9] Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays
Yuan Yu-Yang (袁宇阳), Yuan Zong-Heng (袁纵横), Li Xiao-Nan (李骁男), Wu Jun (吴军), Zhang Wen-Tao (张文涛), Ye Song (叶松). Chin. Phys. B, 2015, 24(7): 074206.
[10] An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme
Wei Xiao-Kun (魏晓琨), Shao Wei (邵维), Shi Sheng-Bing (石胜兵), Zhang Yong (张勇), Wang Bing-Zhong (王秉中). Chin. Phys. B, 2015, 24(7): 070203.
[11] Three-dimensional noble-metal nanostructure:A new kind of substrate for sensitive, uniform, and reproducible surface-enhanced Raman scattering
Tian Cui-Feng (田翠锋), You Hong-Jun (尤红军), Fang Ji-Xiang (方吉祥). Chin. Phys. B, 2014, 23(8): 087801.
[12] Large-scale SiO2 photonic crystal for high efficiency GaN LEDs by nanospherical-lens lithography
Wu Kui (吴奎), Wei Tong-Bo (魏同波), Lan Ding (蓝鼎), Zheng Hai-Yang (郑海洋), Wang Jun-Xi (王军喜), Luo Yi (罗毅), Li Jin-Min (李晋闽). Chin. Phys. B, 2014, 23(2): 028504.
[13] A compact frequency selective stop-band splitter by using Fabry–Perot nanocavity in a T-shape waveguide
M Afshari Bavil, Sun Xiu-Dong (孙秀冬). Chin. Phys. B, 2013, 22(4): 047808.
[14] Improving lithographic masks with the assistance of indentations
Guo Ying-Nan(郭英楠), Li Xu-Feng(李旭峰), Pan Shi(潘石), Wang Qiao(王乔), Wang Shuo(王硕), and Wu Yong-Kuan(吴永宽) . Chin. Phys. B, 2012, 21(5): 057301.
[15] Control of plasmonic wave propagating in nanocavity with tooth-shaped configuration
Li Xu-Feng(李旭峰), Pan Shi(潘石), Guo Ying-Nan (郭英楠), and Wang Qiao(王乔). Chin. Phys. B, 2011, 20(1): 015204.
No Suggested Reading articles found!