Special Issue:
TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
|
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research |
Prev
Next
|
|
|
Resistance switching in oxides with inhomogeneous conductivity |
Shang Da-Shang (尚大山)a b, Sun Ji-Rong (孙继荣)a, Shen Bao-Gen (沈保根)a, Wuttig Matthiasb |
a Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b I. Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen, Germany |
|
|
Abstract Electric-field-induced resistance switching (RS) phenomena have been studied for over 60 years in metal/dielectrics/metal structures. In these experiments a wide range of dielectrics have been studied including binary transition metal oxides, perovskite oxides, chalcogenides, carbon- and silicon-based materials, as well as organic materials. RS phenomena can be used to store information and offer an attractive performance, which encompasses fast switching speeds, high scalability, and the desirable compatibility with Si-based complementary metal-oxide-semiconductor fabrication. This is promising for nonvolatile memory technology, i.e. resistance random access memory (RRAM). However, a comprehensive understanding of the underlying mechanism is still lacking. This impedes a faster product development as well as an accurate assessment of the device performance potential. Generally speaking, RS occurs not in the entire dielectric but only in a small, confined region, which results from the local variation of conductivity in dielectrics. In this review, we focus on the RS in oxides with such an inhomogeneous conductivity. According to the origin of the conductivity inhomogeneity, the RS phenomena and their working mechanism are reviewed by dividing them into two aspects: interface RS, based on the change of contact resistance at metal/oxide interface due to the change of Schottky barrier and interface chemical layer, and bulk RS, realized by the formation, connection, and disconnection of conductive channels in the oxides. Finally the current challenges of RS investigation and the potential improvement of the RS performance for the nonvolatile memories are discussed.
|
Received: 21 March 2013
Revised: 04 April 2013
Accepted manuscript online:
|
PACS:
|
72.60.+g
|
(Mixed conductivity and conductivity transitions)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
73.40.Cg
|
(Contact resistance, contact potential)
|
|
73.40.Rw
|
(Metal-insulator-metal structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004235, 11274363, 51072224, and 11134007), the National Basic Research Program of China (Grant No. 2009CB930803), and the Alexander von Humboldt Foundation (for S.D.S). |
Corresponding Authors:
Shang Da-Shang
E-mail: shangdashan@iphy.ac.cn
|
Cite this article:
Shang Da-Shang (尚大山), Sun Ji-Rong (孙继荣), Shen Bao-Gen (沈保根), Wuttig Matthias Resistance switching in oxides with inhomogeneous conductivity 2013 Chin. Phys. B 22 067202
|
[1] |
Shang D S, Wang Q, Chen L D, Dong R, Li X M and Zhang W Q 2006 Phys. Rev. B 73 245427
|
[2] |
Inoue I H, Yasuda S, Akinaga H and Takagi H 2008 Phys. Rev. B 77 035105
|
[3] |
Kreynina G S 1962 Radio Eng. Electro. Phys. 7 1949
|
[4] |
Hickmott T W 1962 J. Appl. Phys. 33 2669
|
[5] |
Dearnaley G, Stoneham A M and Morgan D V 1970 Rep. Prog. Phys. 33 1129
|
[6] |
Oxley D P 1977 Electrocomp. Sci. Technol. 3 217
|
[7] |
Pagnia H and Sotnik N 1988 Phys. Status Solidi 108 11
|
[8] |
Kozicki M N, Yun M, Hilt L and Singh A 1999 Proceedings of the 1999 Symposium on Solid State Ionic Devices (Wachsman E D, Akridge J R, Liu M and Yamazoe N, ed.) (New Jersey: The Electrochemical Society, Inc.) p. 298
|
[9] |
Liu S Q, Wu N J and Ignatiev A 2000 Appl. Phys. Lett. 76 2749
|
[10] |
Beck A, Bednorz J G, Gerber Ch, Rossel C and Widmer D 2000 Appl. Phys. Lett. 77 139
|
[11] |
Shang D S, Chen L D, Wang Q, Wu Z H, Zhang W Q and Li X M 2008 J. Mater. Res. 23 302
|
[12] |
Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
|
[13] |
Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature 464 873
|
[14] |
Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
|
[15] |
Shang D S, Chen L D, Wang Q, Yu W D, Li X M, Sun J R and Shen B G 2009 J. Appl. Phys. 105 063511
|
[16] |
Watanabe Y, Bednorz J G, Bietsch A, Gerber Ch, Widmer D, Beck A and Wind S J 2001 Appl. Phys. Lett. 78 3738
|
[17] |
Shang D S, Shi L, Sun J R, Shen B G, Zhuge F, Li R W and Zhao Y G 2010 Appl. Phys. Lett. 96 072103
|
[18] |
Yu S and Wong H S P 2011 Appl. Phys. Lett. 99 063507
|
[19] |
Cao M G, Chen Y S, Sun J R, Shang D S, Liu L F, Kang J F and Shen B G 2012 Appl. Phys. Lett. 101 203502
|
[20] |
Pandian R, Kooi B J, Palasantzas G, De Hosson J T M and Pauza A 2007 Appl. Phys. Lett. 91 152103
|
[21] |
Jeong D S, Son S H, Lee S and Cheong B K 2010 Electrochem. Solid-State Lett. 13 G111
|
[22] |
He C L, Zhuge F, Zhou X F, Li M, Zhou G C, Liu Y W, Wang J Z, Chen B, Su W J, Liu Z P, Wu Y H, Cui P and Li R W 2009 Appl. Phys. Lett. 95 232101
|
[23] |
Li Y B, Sintskii A and Tour J M 2008 Nat. Mater. 7 966
|
[24] |
Waser R and Aono M 2007 Nat. Mater. 6 833
|
[25] |
Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
|
[26] |
Sawa A 2008 Mater. Today 11 28
|
[27] |
Rozenberg M J, Inoue I H and Sánchez M J 2004 Phys. Rev. Lett. 92 178302
|
[28] |
Jiang A Q, Wang C, Jin K J, Liu X B, Scott J F, Hwang C S, Tang T A, Lü H B and Yang G Z 2011 Adv. Mater. 23 1277
|
[29] |
Pantel D, Goetze S, Hesse D and Alexe M 2011 ACS Nano. 5 6032
|
[30] |
Odagawa A, Sato H, Inoue I H, Akoh H, Kawasaki M, Tokura Y, Kanno T and Adachi H 2004 Phys. Rev. B 70 224403
|
[31] |
Terabe K, Hasegawa T, Nakayama T and Aono M 2005 Nature 433 47
|
[32] |
Nian Y B, Strozier J, Wu N J, Chen X and Ignatiev A 2007 Phys. Rev. Lett. 98 146403
|
[33] |
Karg S F, Meijer G I, Bednorz J G, Rettner C T, Schrott A G, Joseph E A, Lam C H, Janousch M, Staub U, Mattina F La, Alvarado S F, Widmer D, Stutz R, Drechsler U and Caimi D 2008 IBM J. Res. Dev. 52 481
|
[34] |
Fujii T, Kawasaki M, Sawa A, Kawazoe Y, Akoh H and Tokura Y 2007 Phys. Rev. B 75 165101
|
[35] |
Chae S C, Lee J S, Kim S, Lee S B, Chang S H, Liu C, Kahng B, Shin H, Kim D W, Jung C U, Seo S, Lee M J and Noh T W 2008 Adv. Mater. 20 1154
|
[36] |
Strachan J P, Pickett M D, Yang J J, Aloni S, David Kilcoyne A L, Medeiros-Ribeiro G and Williams R S 2010 Adv. Mater. 22 3573
|
[37] |
Kwon D H, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S, Kim M and Hwang C S 2010 Nat. Nanotechnol. 5 148
|
[38] |
Shang D S 2009 Postdoctoral Research Report (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese)
|
[39] |
Blom P W M, Wolf R M, Cillessen J F M and Krijin M P C M 1994 Phys. Rev. Lett. 73 2107
|
[40] |
Sawa A, Fujii T, Kawasaki M and Tokura Y 2004 Appl. Phys. Lett. 85 4073
|
[41] |
Park C, Seo Y, Jung J and Kim D W 2008 J. Appl. Phys. 103 054106
|
[42] |
Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R and Williams R S 2008 Nat. Nanotechnol. 3 429
|
[43] |
Yang J J, Borghetti J, Murphy D, Stewart D R and Williams R S 2009 Adv. Mater. 21 3754
|
[44] |
Hur J H, Lee M J, Lee C B, Kim Y B and Kim C J 2010 Phys. Rev. B 82 155321
|
[45] |
Szot K, Speier W, Bihlmayer G and Waser R 2006 Nat. Mater. 5 312
|
[46] |
Shang D S, Sun J R, Shi L, Wang J, Wang Z H and Shen B G 2009 Appl. Phys. Lett. 94 052105
|
[47] |
Yang J J, Strachan J P, Miao F, Zhang M X, Pickett M D, Yi W, Ohlberg D A A, Medeiros-Ribeiro G and Williams R S 2011 Appl. Phys. A 102 785
|
[48] |
Liao Z L, Wang Z Z, Meng Y, Liu Z Y, Gao P, Gang J L, Zhao H W, Liang X J, Bai X D and Chen D M 2009 Appl. Phys. Lett. 94 23503
|
[49] |
Yamamoto T, Yasuhara R, Ohkubo I, Kumigashira H and Oshima M 2011 J. Appl. Phys. 110 053707
|
[50] |
Shono K, Kawano H, Yokota T and Gomi M 2008 Appl. Phys. Express 1 055002
|
[51] |
Shen W, Dittmann R, Breuer U and Waser R 2008 Appl. Phys. Lett. 93 222102
|
[52] |
Yang R, Li X M, Yu W D, Gao X D, Shang D S, Liu X J, Cao X, Wang Q and Chen L D 2009 Appl. Phys. Lett. 95 072105
|
[53] |
Li S L, Shang D S, Li J, Gang J L and Zheng D N 2009 J. Appl. Phys. 105 033710
|
[54] |
Shang D S, Chen L D, Wang Q, Wu Z H, Zhang W Q and Li X M 2007 J. Phys. D: Appl. Phys. 40 5373
|
[55] |
Fujimoto M, Koyama H, Nishi Y and Suzuki T 2007 Appl. Phys. Lett. 91 223504
|
[56] |
Sawa A, Fujii T, Kawasaki M and TokuraY 2004 Appl. Phys. Lett. 85 4073
|
[57] |
Yang R, L X M, Yu W D, Gao X D, Shang D S and Chen L D 2010 J. Appl. Phys. 107 063703
|
[58] |
Dong C Y, Shang D S, Shi L, Sun J R, Shen B G, Zhuge F, Li R W and Chen W 2011 Appl. Phys. Lett. 98 072107
|
[59] |
Meyer R, Schloss L, Brewer J, Lambertson R, Kinney W, Sanchez J and Rinerson D 2008 Proc. IEEE Non-Volatile Memory Technology Symp. 11--14 November, 2008, Pacific Grove, Califorinia, USA p. 1
|
[60] |
Hasan M, Dong R, Choi H J, Lee D S, Seong D J, Pyun M B and Hwang H 2008 Appl. Phys. Lett. 92 202102
|
[61] |
Asanuma S, Akoh H, Yamada H and Sawa A 2009 Phys. Rev. B 80 235113
|
[62] |
Sim H, Choi H, Lee D, Chang M, Choi D, Son Y, Lee E H, Kim W, Park Y, Yoo I K and Hwang H 2005 Tech. Dig. IEDM 758
|
[63] |
Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N and Williams R S 2009 Nanotechnology 20 215201
|
[64] |
Shang D S, Sun J R, Shi L, Wang Z H and Shen B G 2008 Appl. Phys. Lett. 93 172119
|
[65] |
Shang D S, Sun J R, Shi L and Shen B G 2008 Appl. Phys. Lett. 93 102106
|
[66] |
Dittmann R, Muenstermann R, Krug I, Park D, Menke T, Mayer J, Besmehn A, Kronast F, Schneider C M and Waser R 2012 Proc. IEEE 100 1979
|
[67] |
Muenstermann R, Menke T, Dittmann R and Waser R 2010 Adv. Mater. 22 4819
|
[68] |
Shibuya K, Dittmann R, Mi S and Waser R 2010 Adv. Mater. 22 411
|
[69] |
Shang D S, Shi L, Sun J R and Shen B G 2011 Nanotechnology 22 254008
|
[70] |
Dong C Y, Shi L, Shang D S, Chen W, Wang J, Shen B G and Sun J R 2011 J. Phys. D: Appl. Phys. 44 205302
|
[71] |
Ramzan M and Brydson R 2005 Sensors Actuators A 118 322
|
[72] |
Son J Y and Shin Y H 2008 Appl. Phys. Lett. 92 222106
|
[73] |
Lanza M, Zhang K, Porti M, Nafria M, Shen Z Y, Liu L F, Kang J F, Gilmer D and Bersuker D 2012 Appl. Phys. Lett. 100 123508
|
[74] |
Shi L, Shang D S, Sun J R and Shen B G 2009 Appl. Phys. Express 2 101602
|
[75] |
Valov I, Waser R, Jameson J R and Kozicki M N 2011 Nanotechnology 22 254003
|
[76] |
Yang Y C, Gao P, Gaba S, Chang T, Pan X Q and Lu W 2012 Nat. Commun. 3 632
|
[77] |
Liu Q, Sun J, Lü H, Long S, Yin K, Wan N, Li Y, Sun L and Liu M 2012 Adv. Mater. 24 1844
|
[78] |
Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A and Hwang C S 2012 Rep. Prog. Phys. 75 076502
|
[79] |
Hirose Y and Hirose H 1976 J. Appl. Phys. 47 2767
|
[80] |
Kozicki M N and Mitkova M 2006 J. Non-cryst. Solids 352 567
|
[81] |
Guo X, Schindler C, Menzel S and Waser R 2007 Appl. Phys. Lett. 91 133513
|
[82] |
Janousch M, Meijer G I, Staub U, Delley B, Karg, S F and Andreasson B P 2007 Adv. Mater. 19 2232
|
[83] |
Yasuhara R, Fujiwara K, Horiba K, Kumigashira H, Kotsugi M, Oshima M and Takagi H 2009 Appl. Phys. Lett. 95 012110
|
[84] |
Choi S. J, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J and Kim K 2011 Adv. Mater. 23 3272
|
[85] |
Azumi K, Aoyama K, Asanuma S, Uesu Y and Katsufuji T 2009 Phys. Rev. B 79 121101
|
[86] |
Shang D S, Shi L, Sun J R and Shen B G 2012 J. Appl. Phys. 111 053504
|
[87] |
Xia Q F, Pickett M D, Yang J J, Zhang M X, Borghetti J, Li X M, Wu W, Ribeiro G M and Williams R S 2011 Nanotechnology 22 254026
|
[88] |
Shi L, Shang D S, Chen Y S, Wang J, Sun J and Shen B G 2011 J. Phys. D: Appl. Phys. 44 455305
|
[89] |
Yoon J H, Kim K M, Lee M H, Kim S K, Kim G H, Song S J, Seok J Y and Hwang C S 2010 Appl. Phys. Lett. 97 232904
|
[90] |
Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C, Tzeng P J, Lin C H, Chen F, Lien C H and Tsai M J 2008 Tech. Dig. IEEE Int. Electron Device Meeting (New York: IEEE) p. 297
|
[91] |
Tsurumaki A, Yamada H and Sawa A 2012 Adv. Func. Mater. 22 1040
|
[92] |
Jeong D S, Cheong B K and Kohlstedt H 2011 Solid State Electron. 63 1
|
[93] |
Linn E, Rosezin R, Kugeler C and Waser R 2010 Nat. Mater. 9 403
|
[94] |
Yang J J, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|