Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060511    DOI: 10.1088/1674-1056/22/6/060511
GENERAL Prev   Next  

The KdV-Burgers equation in modified speed gradient continuum model

Lai Ling-Ling (赖玲玲)a, Cheng Rong-Jun (程荣军)b, Li Zhi-Peng (李志鹏)c, Ge Hong-Xia (葛红霞)a
a Faculty of Science, Ningbo University, Ningbo 315211, China;
b Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;
c College of Electronics and Information Engineering, Tongji University, Shanghai 200092, China
Abstract  Based on the full velocity difference model, Jiang et al. put forward the speed gradient model through the micro-macro linkage. In this paper, the Taylor expansion is adopted to modify the model. The backward travel problem is overcome by our model, which exists in many higher-order continuum models. The neutral stability condition of the model is obtained through the linear stability analysis. Nonlinear analysis shows clearly that the density fluctuation in traffic flow leads to a variety of density waves. Moreover, the Korteweg-de Vries-Burgers (KdV-Burgers) equation is derived to describe the traffic flow near the neutral stability line and the corresponding solution for traffic density wave is derived. The numerical simulation is carried out to investigate the local cluster effects. The results are consistent with the realistic traffic flow and also further verify the results of nonlinear analysis.
Keywords:  traffic flow      the speed gradient model      KdV-Burgers equation  
Received:  12 November 2012      Revised:  27 December 2012      Accepted manuscript online: 
PACS:  05.70.Fh (Phase transitions: general studies)  
  05.60.-k (Transport processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11072117), the Natural Science Foundation of Zhejiang Province of China (Grant No. Y6110007), the Scientific Research Fund of Zhejiang Provincial Education Department (Grant No. Z201119278), the Natural Science Foundation of Ningbo City (Grant Nos. 2012A610152 and 2012A610038), and K.C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Ge Hong-Xia     E-mail:  gehongxia@nbu.edu.cn

Cite this article: 

Lai Ling-Ling (赖玲玲), Cheng Rong-Jun (程荣军), Li Zhi-Peng (李志鹏), Ge Hong-Xia (葛红霞) The KdV-Burgers equation in modified speed gradient continuum model 2013 Chin. Phys. B 22 060511

[1] Daganzo C F 1995 Trans. Res. B 29 227
[2] Aw A and Rascle M 2000 SIAM J. Appl. Math. 60 916
[3] Zhang H M 2002 Trans. Res. B 36 275
[4] Xue Y and Dai S 2003 Phys. Rev. E 68 066123
[5] Jiang R, Wu Q S and Zhu Z J 2002 Trans. Res. B 36 405
[6] Jiang R, Wu Q S and Zhu Z J 2001 Chin. Sci. Bull. 46 345
[7] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[8] Kerner B S and Konhäuser P 1993 Phys. Rev. E 48 2335
[9] Komatsu T and Sasa S 1995 Phys. Rev. E 52 5574
[10] Nagatani T 1999 Phys. Rev. E 60 6395
[11] Gupta A K and Katiyar V K 2005 J. Phys. A: Math. Gen. 38 4069
[12] Kurtze D A and Hong D C 1995 Phys. Rev. E 52 218
[13] Ge H X 2009 Physica A 388 1682
[14] Ge H X and Han X L 2006 Physica A 371 667
[15] Peng G H, Cai X H, Cao B F and Liu C Q 2011 Phys. Lett. A 375 2823
[16] Tian H H and Xue Y 2012 Chin. Phys. B 21 070505
[17] Ge H X, Dai S Q, Xue Y and Dong L Y 2005 Phys. Rev. E 71 066119
[18] Ge H X, Wu S Z, Cheng R J and Lo S M 2011 Chin. Phys. Lett. 28 090501
[19] Berg P, Mason A and Woods A 2000 Phys. Rev. E 61 1056
[20] Zhou X J, Liu Z Z and Luo J 2002 J. Phys. A: Math. Gen. 35 4495
[21] Ge H X, Dai S Q and Dong L Y 2008 Chin. Phys. B 17 2326
[22] Tang T Q 2010 Phys. Lett. A 374 1668
[23] Jiang R, Wu Q S and Zhu Z J 2002 Trans. Res. B 36 405
[24] Hermann M and Kerner B S 1998 Physica A 255 163
[25] Kerner B S and Konhäuser P 1993 Phys. Rev. E 48 R2335
[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[3] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[4] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[5] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[6] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[7] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[8] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[9] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[10] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[11] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[12] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
[13] A new traffic model on compulsive lane-changing caused by off-ramp
Xiao-He Liu(刘小禾), Hung-Tang Ko(柯鸿堂), Ming-Min Guo(郭明旻), Zheng Wu(吴正). Chin. Phys. B, 2016, 25(4): 048901.
[14] A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential
Xiao Ma(马骁), Wei-Fan Zheng(郑伟范), Bao-Shan Jiang(江宝山), Ji-Ye Zhang(张继业). Chin. Phys. B, 2016, 25(10): 108902.
[15] A new traffic model with a lane-changing viscosity term
Ko Hung-Tang (柯鸿堂), Liu Xiao-He (刘小禾), Guo Ming-Min (郭明旻), Wu Zheng (吴正). Chin. Phys. B, 2015, 24(9): 098901.
No Suggested Reading articles found!