Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100203    DOI: 10.1088/1674-1056/21/10/100203
GENERAL Prev   Next  

Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion

Zhang Mei-Ling (张美玲), Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群)
School of Science, Jiangnan University, Wuxi 214122, China
Abstract  Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion are studied. The definition and criterion of the Mei symmetry of Appell equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups are given. The structural equation of Mei symmetry of Appell equations and the expression of Mei conserved quantity deduced directly from Mei symmetry for a variable mass holonomic system of relative motion are gained. Finally, an example is given to illustrate the application of the results.
Keywords:  variable mass      relative motion      Appell equations      Mei conserved quantity  
Received:  16 January 2012      Revised:  28 April 2012      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032).
Corresponding Authors:  Jia Li-Qun     E-mail:  jlq0000@163.com

Cite this article: 

Zhang Mei-Ling (张美玲), Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群) Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion 2012 Chin. Phys. B 21 100203

[1] Appell P 1953 Traité de Mécanique Rationnelle II (Paris: Gauthier-Villars) p. 335
[2] Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) p. 214
[3] Xu X J and Mei F X 2004 J. Beijing Inst. Technol. 23 1 (in Chinese)
[4] Luo S K 2007 Acta Phys. Sin. 56 5580 (in Chinese)
[5] Luo S K 2007 Chin. Phys. Lett. 24 2463
[6] Cai J L 2008 Acta Phys. Sin. 57 5369 (in Chinese)
[7] Chen X W 2008 Chin. Phys. B 17 3180
[8] Cai J L 2010 Chin. J. Phys. 48 728
[9] Jiang W A, Li Z J and Luo S K 2011 Chin. Phys. B 20 030202
[10] Fang J H, Xue Q Z and Zhao C Q 2002 Acta Phys. Sin. 51 2183 (in Chinese)
[11] Ge W K and Zhang Y 2004 Chin. Quar. Mech. 25 573
[12] Zhang Y, Fan C X and Mei F X 2006 Acta Phys. Sin. 55 3237 (in Chinese)
[13] Cui J C, Zhang Y Y and Jia L Q 2009 Chin. Phys. B 18 1731
[14] Xie Y L, Jia L Q and Yang X F 2011 Acta Phys. Sin. 58 2141 (in Chinese)
[15] Mei F X 2001 Chin. Phys. 10 177
[16] Luo S K 2002 Acta Phys. Sin. 51 712 (in Chinese)
[17] Xie Y L and Jia L Q 2010 Chin. Phys. Lett. 27 120201
[18] Cui J C, Zhang Y Y, Yang X F and Jia L Q 2010 Chin. Phys. B 19 030304
[19] Li Y C, Xia L L, Wang X M and Liu X W 2010 Acta Phys. Sin. 59 3639 (in Chinese)
[20] Jia L Q, Xie Y L, Zhang Y Y and Yang X F 2010 Chin. Phys. B 19 110301
[21] Jia L Q, Sun X T, Wang X X, Zhang M L and Xie Y L 2010 J. Henan Norm. Univ. (Natural Science) 33 57 (in Chinese)
[22] Luo Y P and Fu J L 2010 Chin. Phys. B 19 090304
[23] Jia L Q, Xie Y L, Zhang Y Y, Cui J C and Yang X F 2010 Acta Phys. Sin. 59 7552 (in Chinese)
[24] Zhang Y and Mei F X 2000 Chin. Sci. Bull. 45 135
[25] Zheng S W, Tang Y F and Fu J L 2006 Chin. Phys. 15 243
[26] Cai J L 2008 Chin. Phys. Lett. 25 1523
[27] Lou Z M 2008 Acta Phys. Sin. 57 1307 (in Chinese)
[28] Cai J L, Luo S K and Mei F X 2008 Chin. Phys. B 17 3170
[29] Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese)
[30] Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese)
[31] Cai J L 2010 Int. J. Theor. Phys. 49 201
[32] Jiang W A and Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese)
[33] Jia L Q, Sun X T, Zhang M L, Wang X X and Xie Y L 2011 Acta Phys. Sin. 60 084501 (in Chinese)
[34] Li Z J, Jiang W A and Luo S K 2012 Nonlinear Dyn. 67 445 (in Chinese)
[35] Jiang W A and Luo S K 2012 Nonlinear Dyn. 67 475
[36] Jiang W A, Li L, Li Z J and Luo S K 2012 Nonlinear Dyn. 67 1075
[37] Mei F X and Liu G L 1987 Foundations of Analytical Mechanics (Xi'an Jiaotong University Press) p. 91 (in Chinese)
[1] Nonlinear suboptimal tracking control of spacecraft approaching a tumbling target
Zhan-Peng Xu(许展鹏), Xiao-Qian Chen(陈小前), Yi-Yong Huang(黄奕勇), Yu-Zhu Bai(白玉铸), Wen Yao(姚雯). Chin. Phys. B, 2018, 27(9): 090501.
[2] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[3] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[4] Symmetry of Lagrangians of a holonomic variable mass system
Wu Hui-Bin(吴惠彬) and Mei Feng-Xiang(梅凤翔) . Chin. Phys. B, 2012, 21(6): 064501.
[5] Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints
Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Han Yue-Lin(韩月林), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2012, 21(5): 050201.
[6] Mei conserved quantity directly induced by Lie symmetry in a nonconservative Hamilton system
Fang Jian-Hui(方建会), Zhang Bin(张斌), Zhang Wei-Wei(张伟伟), and Xu Rui-Li(徐瑞莉) . Chin. Phys. B, 2012, 21(5): 050202.
[7] Mei symmetries and Mei conserved quantities for higher-order nonholonomic constraint systems
Jiang Wen-An(姜文安), Li Zhuang-Jun(李状君), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2011, 20(3): 030202.
[8] Poisson theory and integration method for a dynamical system of relative motion
Zhang Yi(张毅) and Shang Mei(尚玫) . Chin. Phys. B, 2011, 20(2): 024501.
[9] Lie symmetry and Hojman conserved quantity of a Nielsen equation in a dynamical system of relative motion with Chetaev-type nonholonomic constraint
Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Xie Yin-Li(解银丽), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2011, 20(12): 124501.
[10] Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling(张美玲), Sun Xian-Ting(孙现亭), Wang Xiao-Xiao(王肖肖), Xie Yin-Li(解银丽), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2011, 20(11): 110202.
[11] Special Lie symmetry and Hojman conserved quantity of Appell equations in a dynamical system of relative motion
Xie Yin-Li(解银丽), Jia Li-Qun(贾利群), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2011, 20(1): 010203.
[12] Conformal invariance and conserved quantities of a general holonomic system with variable mass
Xia Li-Li(夏丽莉) and Cai Jian-Le(蔡建乐). Chin. Phys. B, 2010, 19(4): 040302.
[13] Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system
Cui Jin-Chao(崔金超), Zhang Yao-Yu(张耀宇), Yang Xin-Fang(杨新芳), and Jia Li-Qun(贾利群). Chin. Phys. B, 2010, 19(3): 030304.
[14] Mei symmetry and Mei conserved quantity of Nielsen equations for a non-holonomic system of Chetaev's type with variable mass
Yang Xin-Fang(杨新芳), Jia Li-Qun(贾利群), Cui Jin-Chao(崔金超), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2010, 19(3): 030305.
[15] Conformal invariance and conserved quantities of dynamical system of relative motion
Chen Xiang-Wei(陈向炜), Zhao Yong-Hong(赵永红), and Li Yan-Min(李彦敏). Chin. Phys. B, 2009, 18(8): 3139-3144.
No Suggested Reading articles found!