Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100204    DOI: 10.1088/1674-1056/21/10/100204
GENERAL Prev   Next  

Nonlinear integrable couplings of a nonlinear Schrödinger–modified Korteweg de Vries hierarchy with self-consistent sources

Yang Hong-Wei (杨红卫)a, Dong Huan-He (董焕河)a, Yin Bao-Shu (尹宝树)b c
a College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
b Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
c Key Laboratory of Ocean Circulation and Wave, Chinese Academy of Sciences, Qingdao 266071, China
Abstract  By means of the Lie algebra B2, a new extended Lie algebra F is constructed. Based on the Lie algebras B2 and F, the nonlinear Schrödinger-modified Korteweg de Vries (NLS-mKdV) hierarchy with self-consistent sources as well as its nonlinear integrable couplings are derived. With the help of the variational identity, their Hamiltonian structures are generated.
Keywords:  nonlinear integrable couplings      NLS-mKdV hierarchy      self-consistent sources  
Received:  01 April 2012      Revised:  26 April 2012      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
Fund: Project supported by the Innovation Group Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q07-01), the Key Foundation of the National Natural Science Foundation of China (Grant No. 41030855), and the Special Funding of Marine Science Study, State Ocean Administration (Grant No. 20090513-2).
Corresponding Authors:  Yin Bao-Shu     E-mail:  baoshuyin@126.com

Cite this article: 

Yang Hong-Wei (杨红卫), Dong Huan-He (董焕河), Yin Bao-Shu (尹宝树) Nonlinear integrable couplings of a nonlinear Schrödinger–modified Korteweg de Vries hierarchy with self-consistent sources 2012 Chin. Phys. B 21 100204

[1] Tu G Z 1989 J. Math. Phys. 30 330
[2] Ma W X 1996 Chaos, Solitons and Fractals 7 1227
[3] Zhang Y F 2003 Chin. Phys. 12 1194
[4] Tao S X and Xia T C 2010 Chin. Phys. B 19 070202
[5] Yu F J and Li L 2009 Chin. Phys. B 18 3651
[6] Xia T C, Wang H and Zhang Y F 2005 Chin. Phys. 14 247
[7] Zhang Y F and Fan E G 2010 J. Math. Phys. 51 083506
[8] Yang H W and Dong H H 2009 Chin. Phys. B 18 845
[9] Leon J 1990 Phys. Lett. A 144 444
[10] Antonowicz M 1992 Phys. Lett. A 165 47
[11] Zeng Y B, Ma W X and Lin R L 2000 J. Math. Phys. 41 5453
[12] Zeng Y B, Ma W X and Shao Y J 2001 J. Math. Phys. 42 2113
[13] Ma W X 2003 J. Phys. Soc. Jpn. 72 3017
[14] Yu F J 2008 Phys. Lett. A 372 6613
[15] Mel'nikov V K 1992 Inverse Problems 8 133
[16] Wang H Y and Hu X B 2008 Soliton Equation with Self-consistent Sources (Beijing: Tsinghua University Press) p. 3 (in Chinese)
[17] Yu F J and Li L 2008 Chin. Phys. B 17 3965
[18] Xia T C 2010 Chin. Phys. B 19 100303
[19] Yu F J 2011 Chin. Phys. Lett. 28 120201
[20] Wang H and Xia T C 2012 Commun. Nonlinear Sci. Numer. Simul. 17 566
[21] Ma W X 2011 Appl. Math. Comput. 217 7238
[22] Zhang Y F 2011 Commun. Theor. Phys. (Beijing, China) 56 805
[23] Yu F J 2012 Chin. Phys. B 21 010201
[24] Guo F K and Zhang Y F 2010 Commun. Theor. Phys. (Beijing, China) 51 39
[25] Tu G Z 1990 Northeastern Math. J. 6 26
[1] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[2] Two new integrable couplings of the soliton hierarchies with self-consistent sources
Xia Tie-Cheng(夏铁成). Chin. Phys. B, 2010, 19(10): 100303.
[3] Non-isospectral integrable couplings of Ablowitz--Kaup--Newell--Segur (AKNS) hierarchy with self-consistent sources
Yu Fa-Jun (于发军), Li Li (李 丽). Chin. Phys. B, 2008, 17(11): 3965-3973.
No Suggested Reading articles found!