Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 094501    DOI: 10.1088/1674-1056/21/9/094501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems

Chen Rong (陈蓉), Xu Xue-Jun (许学军)
Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  In this paper, the relation of the conformal invariance, the Noether symmetry, and the Lie symmetry for the Hamilton system is discussed in detail. The definition of the conformal invariance for Hamilton systems is given. The relation between the conformal invariance and the Noether symmetry is discussed, the conformal factors of the determining expressions are found by using the Noether symmetry, and the Noether conserved quantity resulted from the conformal invariance is obtained. The relation between the conformal invariance and the Lie symmetry is discussed, the conformal factors are found by using the Lie symmetry, and the Hojman conserved quantity resulted from the conformal invariance of the system is obtained. Two examples are given to illustrate the application of the results.
Keywords:  Hamilton system      conformal invariance      conformal factor      conserved quantity  
Received:  14 December 2011      Revised:  31 May 2012      Accepted manuscript online: 
PACS:  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  02.20.Sv (Lie algebras of Lie groups)  
Corresponding Authors:  Xu Xue-Jun     E-mail:  xxj@zjnu.cn

Cite this article: 

Chen Rong (陈蓉), Xu Xue-Jun (许学军) Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems 2012 Chin. Phys. B 21 094501

[1] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[2] Mei F X and Liu Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) (in Chinese)
[3] Noether A E 1918 Nachr. Akad. Wiss. Göttingen. Math. Phys. KI II 235
[4] Galiullin A S, Gafarov G G and Malaishka R P 1997 Analytical Dynamics of Helmholtz Birkhoff and Nambu Systems (Moscow: UFN) (in Russian)
[5] Cai J L and Mei F X 2008 Acta Phys. Sin. 57 5369 (in Chinese)
[6] Liu C, Mei F X and Guo Y X 2008 Acta Phys. Sin. 57 6704 (in Chinese)
[7] Chen X W, Zhao Y H and Liu C 2009 Acta Phys. Sin. 58 5150 (in Chinese)
[8] Chen X W, Liu C and Mei F X 2008 Chin. Phys. B 17 3180
[9] Cai J L, Luo S K and Mei F X 2008 Chin. Phys. B 17 3170
[10] Cai J L 2008 Chin. Phys. Lett. 25 1523
[11] Fu J L, Wang X J and Xie F P 2008 Chin. Phys. Lett. 25 2413
[12] Liu C, Mei F X and Guo Y X 2009 Chin. Phys. B 18 395
[13] Liu C, Liu S X, Mei F X and Guo Y X 2009 Chin. Phys. B 18 0856
[14] Zhang Y 2009 Chin. Phys. B 18 4636
[15] Li Y C, Xia L L and Wang X M 2009 Chin. Phys. B 18 4643
[16] Zhang M J, Fang J H, Lu K, Zhang K J and Li Y 2009 Chin. Phys. B 18 4650
[17] Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese)
[18] Xia L L and Cai J L 2010 Chin. Phys. B 19 040302
[19] Luo Y P and Fu J L 2010 Chin. Phys. B 19 090303
[20] Li Y M 2010 Journal of Yunnan University 32 52 (in Chinese)
[1] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[2] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[3] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[4] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[5] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[6] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin (金世欣), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(5): 054501.
[7] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[8] Noether's theorem for non-conservative Hamilton system based on El-Nabulsi dynamical model extended by periodic laws
Long Zi-Xuan (龙梓轩), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(11): 114501.
[9] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[10] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
[11] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li(夏丽莉) and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(7): 070202.
[12] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[13] Symmetry of Lagrangians of holonomic nonconservative system in event space
Zhang Bin(张斌), Fang Jian-Hui(方建会), and Zhang Wei-Wei(张伟伟) . Chin. Phys. B, 2012, 21(7): 070208.
[14] Symmetry of Lagrangians of a holonomic variable mass system
Wu Hui-Bin(吴惠彬) and Mei Feng-Xiang(梅凤翔) . Chin. Phys. B, 2012, 21(6): 064501.
[15] Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints
Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Han Yue-Lin(韩月林), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2012, 21(5): 050201.
No Suggested Reading articles found!