Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087503    DOI: 10.1088/1674-1056/21/8/087503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Mean-field and high temperature series expansion calculations of some magnetic properties of Ising and XY antiferromagnetic thin-films

R. Masroura b, M. Hamedounc d, A. Benyoussefb c d
a Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Safi, Morocco;
b LMPHE (URAC-12), Faculté des Sciences, Université Mohamed V-Agdal, Rabat, Morocco;
c Institute for Nanomaterials and Nanotechnologies, MAScIr, Rabat, Morocco;
d Academie Hassan II des Sciences et Techniques, Rabat, Morocco
Abstract  In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Néel temperature and thickness for layers (n=2, 3, 4, 5, 6, and bulk (∞)) by means of mean-field and high temperature series expansion (HTSE) combined with the Padé approximant calculations. The scaling law of magnetic susceptibility and magnetization is used to determine the critical exponent γ, ν eff (mean), ratio of the critical exponents γ/ν, and magnetic properties of Ising and XY antiferromagnetic thin-films for different thickness layers n=2, 3, 4, 5, 6, and bulk (∞).
Keywords:  high-temperature series expansions      mean-field theory      antiferromagnetic thin film      Padé approximant      Néel temperature      critical exponent  
Received:  29 November 2011      Revised:  15 January 2012      Accepted manuscript online: 
PACS:  75.50.Ee (Antiferromagnetics)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  68.35.Rh (Phase transitions and critical phenomena)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
Corresponding Authors:  R. Masrour     E-mail:  rachidmasrour@hotmail.com

Cite this article: 

R. Masrour, M. Hamedoun, A. Benyoussef Mean-field and high temperature series expansion calculations of some magnetic properties of Ising and XY antiferromagnetic thin-films 2012 Chin. Phys. B 21 087503

[1] Abid M, Ouahmane H, Lassri H, Khmouo A and Krishnan R 1999 J. Magn. Magn. Mater. 202 335
[2] Custellanos D, Farach H A, Creswick R J and Poole C P Jr 1993 Phys. Rev. B 47 5037
[3] Bengrine M, Benyoussef A, El Kenz A, Loulidi A and Mhirech F1998 Phys. Status Solidi B 208 207
[4] Huang Z, Feng Q, Chen Z, Chen S and Du Y 2003 Microeletron. Eng. 66 128
[5] Seehra M S and Giebultowicz T M 1988 Phys. Rev. B 38 11898
[6] Kachkachi H, Ezzir A, Nogues M and Tronc E 2000 Eur. Phys. J. B 14 681
[7] Kodama R H and Berkowitz A E 1999 Phys. Rev. B 59 6321
[8] Scott S M and Giebultowicz T M 2002 J. Appl. Phys. 91 6842
[9] Lin D L, Che H and Xia Y 1992 Phys. Rev. A 46 1805
[10] Moutie A, Kerouad M and Laaboudi B 2000 Chin. J. Phys. 38 975
[11] Capehart T W and Fisher M E 1976 Phys. Rev. B 13 5021
[12] Chui S T 1994 Phys. Rev. B 50 12559
[13] Hu X and Kawazoe Y 1994 Phys. Rev. B 50 12647
[14] Landau D P and Binder K 1990 Phys. Rev. B 41 4633
[15] Allan G A T 1970 Phys. Rev. B 1 352
[16] Capehart T W and Fisher M E 1976 Phys. Rev. B 13 5021
[17] Gaunt D S and Guttman A J 1974 Phase Transitions and Critical Phenomena ed. Wortis M (New York: Academic) p. 3
[18] Pan K K 2005 Phys. Rev. B 71 134524
[19] Baker G A and Morris P G (eds.) 1981 Padé Approximants (London: Addison-Wesley)
[20] Pan K K 2000 Phys. Lett. A 271 291
[21] Pan K K 1999 Phys. Rev. B 59 1168
[22] Wentworth C and Wang Y L 1987 Phys. Rev. B 36 8687
[23] Wang Y L, Wentworth C and Westwanski B 1985 Phys. Rev. B 32 1805
[24] Stanley E 1974 “D-Vector Model or Universality Hamiltonian: Properties of Isotropically Interacting D-Dimensional Classical Spins” in Phase Transition and Critical Phenomena Vol. 3 p. 520
[25] Belmamoun Y, Ez-Zahraouy H and Kerouad M 2009 J. Magn. Magn. Mater. 321 635
[26] Masrour R, Hamedoun M, Hourmatallah A, Bouslykhane K and Benzakour N 2008 Phys. Lett. A 372 5203
[27] Binder K and Hohenberg P C 1972 Phys. Rev. B 6 3461
[28] Binder K and Hohenberg P C 1974 Phys. Rev. B 9 2194
[29] Landau D P and Pandey R 1989 Phys. Rev. B 39 16
[30] Kosterlitz J M and Thouless D J 1973 J. Phys. C 5 L124
[31] George A, Baker Jr, Nickel B G and Meiron D I 1978 Phys. Rev. B 17 1365
[32] Carr C E H Y 1977 Phys. Rev. Lett. 39 1558
[33] Ferrer M, Moore M A and Wortis M 1973 Phys. Rev. B 8 5205
[34] Swendsen R H 1983 Phys. Rev. B 27 391
[35] Wilson K G 1972 Phys. Rev. Lett. 28 548
[36] Ritchie D S and Fisher M E 1973 Phys. Rev. B 7 480
[37] Laosiritaworn Y, Poulter J and Staunten J B 2004 Phys. Rev. B 70 104413
[38] Haubenreisser W, Brodkorb W, Corciovei A and Costache G 1972 Phys. Status Solidi B 53 9
[39] Kaneyoshi T 1990 J. Magn. Magn. Mater. 89 L1
[40] Fisher M E 1971 Critical Phenomena (New York: Academic)
[41] Barber M N 1983 Phase Transitions and Critical Phenomena (New York: Academic) p. 8
[42] Ginzburg V L and Pitaevskii L P 1958 Sov. Phys. 7 858
[43] Kaganov M I and Omelyanchuk A N 1972 Sov. Phys. 34 895
[44] Hamedoun M, Bouslykhane K, Bakrima H, Hourmatallah A and Benzakour N 2005 Physica A 358 102
[45] Masrour R, Hamedoun M and Benyoussef A 2012 Appl. Surf. Sci. 258 1902
[46] Butera P and Comi M 1995 Phys. Rev. B 52 6185
[47] Zuluaga J M and Restrepo J 2006 Physica B 384 224
[48] Cossio P, Zuluaga J M and Restrepo J 2006 Physica B 384 227
[49] Kadanoff L P 2000 Statistical Physics: Statics, Dynamics and Renormalization (Singapore: World Scientific)
[50] Acquarone M and Ventura CI 2009 J. Magn. Magn. Mater. 321 2648
[1] Effects of electron correlation on superconductivity in the Hatsugai-Kohmoto model
Huai-Shuang Zhu(祝怀霜) and Qiang Han(韩强). Chin. Phys. B, 2021, 30(10): 107401.
[2] Critical behavior in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Tina Raoufi, Yinina Ma(马怡妮娜), Young Sun(孙阳). Chin. Phys. B, 2020, 29(6): 067503.
[3] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[4] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[5] Dyson-Maleev theory of an X X Z ferrimagnetic spin chain with single-ion anisotropy
Yu-Ge Chen(陈宇戈), Yin-Xiang Li(李殷翔), Li-Jun Tian(田立君), Bin Chen(陈斌). Chin. Phys. B, 2018, 27(12): 127501.
[6] Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver
Li Huang(黄理). Chin. Phys. B, 2016, 25(11): 117101.
[7] Critical exponents of ferroelectric transitions in modulated SrTiO3:Consequences of quantum fluctuations and quenched disorder
Wang Jing-Xue (王景雪), Liu Mei-Feng (刘美风), Yan Zhi-Bo (颜志波), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2013, 22(7): 077701.
[8] A set of new nucleon coupling constants and the proto neutron star matter
Zhao Xian-Feng (赵先锋), Jia Huan-Yu (贾焕玉). Chin. Phys. B, 2012, 21(8): 089701.
[9] The magnetic properties of diluted CoFe2O4 nanomaterials
R. Masrour, M. Hamedoun, and A. Benyoussef . Chin. Phys. B, 2012, 21(4): 047501.
[10] The construction of homoclinic and heteroclinic orbitals in asymmetric strongly nonlinear systems based on the Pad'e approximant
Feng Jing-Jing(冯晶晶), Zhang Qi-Chang(张琪昌), and Wang Wei(王炜) . Chin. Phys. B, 2011, 20(9): 090202.
[11] Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
Bayram Deviren, Osman Canko, and Mustafa Keskin. Chin. Phys. B, 2010, 19(5): 050518.
[12] Successive defects asymmetric simple exclusion processes with particles of arbitrary size
Cai Jiu-Ju(蔡九菊),Xiao Song(肖松), Wang Ruo-Hui(王若翚), and Liu Fei(刘飞) . Chin. Phys. B, 2009, 18(12): 5097-5102.
[13] Coulomb effects on the formation of proton halo nuclei
Liang Yu-Jie(梁玉洁), Li Yan-Song(李岩松), Zhu Min(朱民), Liu Zu-Hua(刘祖华), and Zhou Hong-Yu(周宏余). Chin. Phys. B, 2009, 18(12): 5267-5271.
[14] Quantum backreaction of quantum fluid in Bose--Einstein condensates
Xu Yan(徐岩), Xiong Zu-Zhou(熊祖周), Chen Bing(陈兵), Li Zhao-Xin(李照鑫), and Tan Lei(谭磊). Chin. Phys. B, 2009, 18(11): 4734-4737.
[15] Adomian decomposition method and Padé approximants for solving the Blaszak--Marciniak lattice
Yang Pei(杨 沛), Chen Yong(陈勇), Li Zhi-Bin(李志斌). Chin. Phys. B, 2008, 17(11): 3953-3964.
No Suggested Reading articles found!