CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The magnetic properties of diluted CoFe2O4 nanomaterials |
R. Masroura)b)†, M. Hamedounc)d), and A. Benyoussefb)c)d) |
a. Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid-BP 63 46000 Safi, Morocco;
b. LMPHE (URAC 12), Faculté des Sciences, Université Mohamed V-Agdal, Rabat, Morocco;
c. Institute for Nanomaterials and Nanotechnologies, Rabat, MAScIR, Morocco;
d. Academie Hassan II des Sciences et Techniques, Rabat, Morocco |
|
|
Abstract The magnetic properties of (CoxFe1-x)A(Zn1-xFe1+x)BO4 are studied using mean-field theory and the probability distribution law to obtain the saturation magnetization, the coercive field, the critical temperature, and the exchange interactions with different values of D (nm) and x. High-temperature series expansions (HTSEs) combined with the Padé approximant are used to calculate the critical temperature of (CoxFe1-x)A(Zn1-xFe1+x)BO4, and the critical exponent associated with magnetic susceptibility is obtained.
|
Received: 17 August 2011
Revised: 04 November 2011
Accepted manuscript online:
|
PACS:
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
75.40.Cx
|
(Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
75.30.Cr
|
(Saturation moments and magnetic susceptibilities)
|
|
Corresponding Authors:
R. Masrour,rachidmasrour@hotmail.com
E-mail: rachidmasrour@hotmail.com
|
Cite this article:
R. Masrour, M. Hamedoun, and A. Benyoussef The magnetic properties of diluted CoFe2O4 nanomaterials 2012 Chin. Phys. B 21 047501
|
[1] |
Chikazumi S and Charap S H 1964 Physics of Magnetism (New York: John Wiley & Sons) p. 296
|
[2] |
Tebble R S and Craik D J 1969 Magnetic Materials (London: John Wiley and Sons) p. 252
|
[3] |
Smith J and Wijn H 1959 Ferrites (London: Cleaver Hume Press) p. 140
|
[4] |
Gillepsie T J, Marshall C H, Contrelas M, Keane J, Wolski E, Wolski W, Piszora P, Pietrusik M, Subrt J, Grygar T and Nejezchleba M 1999 Int. J. Inorg. Mater. 1 187
|
[5] |
Gibbs T C 1976 Principles of Mossbauer Spectroscopy (London: Chapman and Hall) p. 22
|
[6] |
Amer M A and Hemeda O M 1995 Hyperene Interactions 96 99
|
[7] |
Oak H N, Baek K S and Kim S 1998 J. Phys. Stat. Sol. B 208 249
|
[8] |
Chinnasamy C N, Narayanasamy A, Ponpandian N, Chattopadhyay K, Shonoda K, Jeyadefan B, Tohji K, Nakatsuka K, Furubayashi T and Nakatan I 2001 Phys. Rev. B 63 184108
|
[9] |
Thanki V T, Jani K H, Trivedi B S, Modi K B and Joshi H H 1998 Mater. Lett. 37 236
|
[10] |
Costa A C F M, Tortella E, Morelli M R and Kiminami R H G A 2003 J. Magn. Magn. Mater. 256 174
|
[11] |
Singh K A, Verma A, Thakur O P, Pracash C, Goel T C and Mendiratta R G 2003 Mater. Lett. 57 1040
|
[12] |
Wang L and Li F S 2001 J. Magn. Magn. Mater. 223 233
|
[13] |
Upadhyay C, Mishra D, Verma H C, Anand S and Das R P 2003 J. Magn. Magn. Mater. 260 188
|
[14] |
Rath C, Sahu K K, Anand S, Date S K, Mishra N C and Das R P 1999 J. Magn. Magn. Mater. 202 77
|
[15] |
Verma S, Joy P A, Khollam Y B, Potdar H S and Deshpande S B 2004 Mater. Lett. 58 1092
|
[16] |
Y Fu, Pan K and Lin C 2002 Mater. Lett. 57 291
|
[17] |
Parvatheeswara R B, Subba R P S V, Murthy G V S and Rao K H 2004 J. Magn. Magn. Mater. 268 315
|
[18] |
Bhowmik R N and Ranganathan R 2003 Phys. Rev. B 68 134433
|
[19] |
Grigorova M, Blythe H J, Blaskov V, Rusanov V, Petkov V, Masheva V, Nihtianova D, Martinez L I, Munoz J S and Mikhov M 1998 J. Magn. Magn. Mater. 183 163
|
[20] |
Maaz K, Mumntaz A, Hasain S K and Ceylan A 2007 J. Magn. Magn. Mater. 308 289
|
[21] |
Dey S, Roy A, Das D and Ghose J 2004 J. Magn. Magn. Mater. 270 224
|
[22] |
Bae D, Kim S, Lee H and Han K 2003 Mater. Lett. 57 1997
|
[23] |
Hilger I, Hergt R and Kaiser W A 2005 J. Magn. Magn. Mater. 293 314
|
[24] |
Baker G A and Graves M P 1981 Padé Approximants (London: Addison & Wesley)
|
[25] |
Navaro R 1990 Magnetic Properties of Layered Transition Metal Compounds (Jonsgh & Daventa: Kluwer) p. 105
|
[26] |
Moron M C 1996 J. Phys.: Condens. Matter. 8 11141
|
[27] |
Hamedoun M, Bakrim H, Bouslykhane K, Hourmatallah A, Benzakour N and Masrour R 2008 J. Phys.: Condens. Matter. 20 125216
|
[28] |
Masrour R, Hamedoun M and Benyoussef A 2010 J. Magn. Magn. Mater. 322 301
|
[29] |
Jin K S, Wha L S and Sung C Kim 2001 Jpn. J. Appl. Phys. 40 4897
|
[30] |
Haubenreisser W, Brodkorb W, Corciovei A and Costache G 1972 Phys. Status Solidi B 53 9
|
[31] |
Hamedoun M, Housa M, Benzakour N and Hourmatallah A 1998 J. Phys.: Condens. Matter. 10 3611
|
[32] |
Hamedoun M, Bakrim H, Filali A, Hourmatallah A, Benzakour N and Sagredo V 2004 J. Alloys Compd. 369 70
|
[33] |
Hamedoun M, Bakrim H, Hourmatallah A and Benzakour N 2003 Surf. Sci. 539 159
|
[34] |
Hamedoun M, Bakrim H, Hourmatallah A and Benzakour N 2003 Superlattices Microstruct. 33 131
|
[35] |
Hamedoun M, Houssa M, Cherriet Y and Bakkali F Z 1999 Phys. Status Solidi B 214 403
|
[36] |
Moron M C 1996 J. Phys.: Condens. Matter. 8 11141
|
[37] |
Stanley H E 1967 Phys. Rev. 158 537
|
[38] |
Köseoglu Y, Baykal A, Gözüak F and Kavas H 2009 Polyhedron 28 2887
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|