CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Thermospin effects in parallel coupled double quantum dots in the presence of the Rashba spin–orbit interaction and Zeeman splitting |
Xue Hui-Jie(薛惠杰)a)b), Lü Tian-Quan(吕天全)a)†, Zhang Hong-Chen(张红晨)c), Yin Hai-Tao(尹海涛)b), Cui Lian(催莲)a), and He Ze-Long(贺泽龙)a) |
a. Department of physics, Center for Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin 150001, China;
b. Heilongjiang Key Laboratory for Low Dimensional and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China;
c. Space Materials and Environment Engineering Laboratory, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract The thermoelectric and the thermospin transport properties, including electrical conductivity, Seebeck coefficient, thermal conductivity, and thermoelectric figure of merit, of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique. The periodic Anderson model is used to describe the quantum dot system, the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered. The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects. We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only.
|
Received: 18 April 2011
Revised: 09 October 2011
Accepted manuscript online:
|
PACS:
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
73.21.La
|
(Quantum dots)
|
|
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
Fund: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. F200939). |
Corresponding Authors:
L? Tian-Quan,ltq@hit.edu.cn
E-mail: ltq@hit.edu.cn
|
Cite this article:
Xue Hui-Jie(薛惠杰), LŰ Tian-Quan(吕天全), Zhang Hong-Chen(张红晨), Yin Hai-Tao(尹海涛), Cui Lian(催莲), and He Ze-Long(贺泽龙) Thermospin effects in parallel coupled double quantum dots in the presence of the Rashba spin–orbit interaction and Zeeman splitting 2012 Chin. Phys. B 21 037201
|
[1] Cutler M and Mott N F 1969 Phys. Rev. 181 1336[2] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105[3] Kubala B, König J and Pekola J 2008 Phys. Rev. Lett. 100 066801[4] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631[5] Blanter Y M, Bruder C, Fazio R and Schoeller H 1997 Phys. Rev. B 55 4069[6] Lin C P J and Reinecke T L 1995 Phys. Rev. B 51 13244[7] Humphrey T E and Linke H 2005 Phys. Rev. Lett. 94 096601[8] Kim T S and Hershfield S 2002 Phys. Rev. Lett. 88 136601[9] Kim T S and Hershfield S 2003 Phys. Rev. B 67 165313[10] Swirkowicz R, Wierzbicki M and Barnas J 2009 Phys. Rev. B 80 195409[11] Chi F, Zheng J, Lu X D and Zhang K C 2011 Phys. Lett. A 375 1352[12] Liu J, Sun Q F and Xie X C 2010 Phys. Rev. B 81 245323[13] Swirkowicz R and Wierzbicki M 2010 Phys. Rev. B 82 165334[14] S醤chez R and B黷tiker M 2011 Phys. Rev. B 83 085428[15] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778[16] Sinova J 2010 Nat. Mater. 9 880[17] Li Y X and Li B Z 2004 Phys. Lett. A 330 274[18] Li Y X and Li B Z 2005 Chin. Phys. 14 1009[19] Li Y X 2006 Phy. Lett. A 358 70[20] L? H F, Zhu L C, Zu X T and Zhang H W 2010 Appl. Phys. Lett. 96 12311[21] Swirkowicz R, Wierzbicki M and Barnas J 2009 Phys. Rev. B 80 195409[22] Zhu L C, Jiang X D, Zu X T and L? H F 2010 Phys. Lett. A 374 4269[23] Liu Y S and Yang X F 2010 J. Appl. Phys. 108 023710[24] Liu Y S, Chi F, Yang X F and Feng J F 2011 J. Appl. Phys. 109 053712[25] Liu Y S, Zhang D B, Yang X F and Feng J F 2011 Nanotechnology 22 225201[26] Xue H J, L? T Q, Zhang H C, Yin H T, Cui L and He Z L 2011 Chin. Phys. B 20 027301[27] Liang L, Wang Z M, Lee J H, Mazur Y I, Shih C K and Salamo G J 2008 ACS Nano 2 2219[28] Chi F and Li S S 2006 J. Appl. Phys. 99 043705[29] Van der Wiel W G, Franceschi S D, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1[30] Chi F and Zhao H L 2010 Superlattices and Mirostructures 47 452[31] Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310[31] Yin H T, L? T Q, Sun P N, Liu X J and Xue H J 2009 Phys. Lett. A 373 3085[32] Yin H T, L? T Q, Liu X J and Xue H J 2010 Phys. Status. Solidi. B 247 150[33] Huang R, Wu S Q and Yan C H 2010 Chin. Phys. B 19 077302[34] Wang R, Kong L M, Zhou Y Q, Zhang C X and Xing Z Y 2010 Chin. Phys. B 19 127202 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|