|
|
Landau damping of collective mode in a quasi-two-dimensional repulsive Bose–Einstein condensate |
Ma Xiao-Dong(马晓栋)†, Yang Zhan-Jin(杨占金), Lu Jun-Zhe(路俊哲), and Wei Wei(魏蔚) |
College of Physics and Electronic Engineering, Xinjiang Normal University, Urumchi 830054, China |
|
|
Abstract We investigate the Landau damping of the collective mode in a quasi-two-dimension repulsive Bose—Einstein condensate by using the self-consistent time-dependent Hatree—Fock—Bogoliubov approximation and a complete and orthogonal eigenfunction set for the elementary excitation of the system. We calculate the three-mode coupling matrix element between the collective mode and the thermal excited quasi-particles and the Landau damping rate of the collective mode. We discuss the dependence of the Landau damping on temperature, on atom number in the condensate, on transverse trapping frequency and on the length of the condensate. The energy width of the collective mode is taken into account in our calculation. With little approximation, our theoretic calculation results agree well with the experimental ones and are helpful for deducing the damping mechanics and the inter-particle interaction.
|
Received: 13 January 2011
Revised: 15 February 2011
Accepted manuscript online:
|
PACS:
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
05.30.Jp
|
(Boson systems)
|
|
67.10.Db
|
(Fermion degeneracy)
|
|
Cite this article:
Ma Xiao-Dong(马晓栋), Yang Zhan-Jin(杨占金), Lu Jun-Zhe(路俊哲), and Wei Wei(魏蔚) Landau damping of collective mode in a quasi-two-dimensional repulsive Bose–Einstein condensate 2011 Chin. Phys. B 20 070307
|
[1] |
Pethick C J and Smith H 2002 Bose—Einstein Condensation in Dilute Gases (1st ed) (Cambridge: Cambridge University Press) pp. 154—157, 171—178, 225—230
|
[2] |
Stringari S 1996 Phys. Rev. Lett. 77 2360
|
[3] |
Fetter A L 1996 Phys. Rev. A 53 4245
|
[4] |
Ruprecht P A, Edwards M, Burnett K and Clark C W 1996 Phys. Rev. A 54 4178
|
[5] |
Dalfovo F, Minniti C and Pitaevskii L P 1997 Phys. Rev. A 56 4855
|
[6] |
Morgan S A, Choi S, Burnett K and Edwards M 1998 Phys. Rev. A 57 3818
|
[7] |
Hechenblaikner G, Marag`o O M, Hodby E, Arlt J, Hopkins S and Foot C J 2000 Phys. Rev. Lett. 85 692
|
[8] |
Hodby E, Marag`o O M, Hechenblaikner G and Foot C J Phys. Rev. Lett. 86 2196
|
[9] |
Marag`o O M, Hopkins S A, Arlt J, Hodby E, Hechenblaikne G and Foot C J 2000 Phys. Rev. Lett. 84 2056
|
[10] |
Khawaja U A and Stoof H T C 2001 Phys. Rev. A 65 013605
|
[11] |
Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev. Lett. 101 010402
|
[12] |
Xie Z W and Liu W M 2004 Phys. Rev. A 70 045602
|
[13] |
Liu W M, Fan W B, Zheng W M, Liang J Q and Chui S T 2002 Phys. Rev. Lett. 88 170408
|
[14] |
Huang G, Szeftel J and Zhu S 2002 Phys. Rev. A 65 053605
|
[15] |
Yin J P, Gao W J, Wang H F, Long Q and Wang Y Z 2002 Chin. Phys. B 11 1157
|
[16] |
Zheng J R 1999 Chin. Phys. 8 721
|
[17] |
Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[18] |
Jin D S, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1996 Phys. Rev. Lett. 77 420
|
[19] |
Jin D S, Matthews M R, Ensher J R, Wieman C E and Cornell E A 1997 Phys. Rev. Lett. 78 764
|
[20] |
Chevy F, Bretin V, Rosenbusch P, Madison K W and Dalibard J 2002 Phys. Rev. Lett. 88 250402
|
[21] |
Mewes M O, Andrews R, Druten N J V, Kurn D M, Durfee D S and Ketterle W 1996 Phys. Rev. Lett. 77 988
|
[22] |
Stamper-Kurn D M, Miesner H J, Chikkatur A P, Inouye S, Stenger J and Ketterle W 1998 Phys. Rev. Lett. 81 2194
|
[23] |
Onofrio R, Durfee D S, Raman C, Köhl M, Kuklewicz C E and Ketterle W 2000 Phys. Rev. Lett. 84 810
|
[24] |
Marag`o O, Hechenblaikner G, Hodby E and Foot C 2001 Phys. Rev. Lett. 86 3938
|
[25] |
Giorgini S 1998 Phys. Rev. A 57 2949
|
[26] |
Giorgini S 2000 Phys. Rev. A 61 063615
|
[27] |
Guilleumas M and Pitaevskii L P 1999 Phys. Rev. A 61 013602
|
[28] |
Guilleumas M and Pitaevskii L P 2003 Phys. Rev. A 67 053607
|
[29] |
Pitaevskii L P and Stringari S 1997 Phys. Lett. A 235 398
|
[30] |
Fedichev P O, Shlyapnikov G V and Walraven J T M 1998 Phys. Rev. Lett. 80 2269
|
[31] |
Zaremba E, Griffin A and Nikuni T 1998 Phys. Rev. A 57 4695
|
[32] |
Jackson B and Zaremba E 2002 Phys. Rev. Lett. 89 150402
|
[33] |
Reidl J, Csord'as A, Graham R and Sz'epfalusy P 2000 Phys. Rev. A 61 043606
|
[34] |
Morgan S A, Rusch M, Hutchinson D A W and Burnett K 2003 Phys. Rev. Lett. 91 250403
|
[35] |
Morgan S A 2004 Phys. Rev. A 69 023609
|
[36] |
Tsuchiya S and Griffin A 2005 Phys. Rev. A 72 053621
|
[37] |
Ma X, Zhou Y, Ma Y L and Huang G 2006 Chin. Phys. 15 1871
|
[38] |
Ma X, Ma Y L and Huang G 2007 Chin. Phys. Lett. 24 616
|
[39] |
Ma X, Ma Y L and Huang G 2007 Phys. Rev. A 75 013628
|
[40] |
Ma Y L and Chui S T 2002 Phys. Rev. A 65 053610
|
[41] |
Ma Y L and Chui S T 2002 Phys. Rev. A 66 053611
|
[42] |
Hu B, Huang G and Ma Y L 2004 Phys. Rev. A 69 063608
|
[43] |
Ma Y L, Huang G and Hu B 2005 Phys. Rev. A 71 062504
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|