Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 016101    DOI: 10.1088/1674-1056/20/1/016101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structures and luminescence properties of Yb3+ in the double perovskites Ba2YB'O6 (B'=Ta5+, Nb5+) phosphors

Zhou Wen-Long(周文龙)a)b), Zhang Qing-Li(张庆礼) a)†, Gao Jin-Yun(高进云)a)b), Liu Wen-Peng(刘文鹏)a), Ding Li-Hua(丁丽华) a)b), and Yin Shao-Tang(殷绍唐)a)
a Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; b Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  The Yb3+ doped Ba2YB'O6 (B'=Ta5+, Nb5+) were prepared by high temperature solid-state reaction method, their structures were determined by x-ray diffraction and refined by Rietveld method. The diffuse reflection absorption, excitation and emission spectra of Yb3+:Ba2YB'O6 (B'=,Ta5+, Nb5+) were measured at room temperature. Under the excitation of ultraviolet light, these phosphors exhibit broad charge transfer band emissions of TaO6 or NbO6 centre with large Stokes shift. The Yb3+ doped into these hosts are situated at Y3+ sites of cubic symmetry (Oh). The experimental energy levels of Yb3+ in Ba2YTaO6 and Ba2YNbO6 were determined by photoluminescence and diffuse reflection absorption spectra. Their wavefunctions and theoretical energy levels were obtained by diagonalising the Hamiltonian matrix. The experimental energy levels were fitted by Levenberg–Marquardt iteration algorithm to determine crystal field parameters. Then, the magnetic-pole transition line strengths of Yb3+:Ba2YB'O6(B'=Ta5+, Nb5+) from (2F5/2)$\varGamma$8- to the low-energy states were calculated.
Keywords:  luminescence properties      Yb3+      Ba2YTaO6      Ba2YNbO6  
Received:  05 June 2010      Revised:  28 July 2010      Accepted manuscript online: 
PACS:  61.10.Nz  
  71.70.Ch (Crystal and ligand fields)  
  78.55.-m (Photoluminescence, properties and materials)  
  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50772112, 90922003, and 50872135), Provincial Natural Science Fund of Anhui, China (Grant No. 08040106820), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1002).

Cite this article: 

Zhou Wen-Long(周文龙), Zhang Qing-Li(张庆礼), Gao Jin-Yun(高进云), Liu Wen-Peng(刘文鹏), Ding Li-Hua(丁丽华), and Yin Shao-Tang(殷绍唐) Structures and luminescence properties of Yb3+ in the double perovskites Ba2YB'O6 (B'=Ta5+, Nb5+) phosphors 2011 Chin. Phys. B 20 016101

[1] Kurian J, Nair K V O, Sajith P K, John A M and Koshi J 1998 Appl. Supercond. 6 259
[2] Gröger B, Kulawik J, Szwagierczak D and Skwarek A 2009 Solid State Ionics 180 872
[3] Moreira R L, Abdul Khalam L, Sebastian Mailadil T and Dias A 2007 J. Eur. Ceram. Soc. 27 2803
[4] Sivakumar V and Varadaraju U V 2008 J. Solid State Chem. 181 3344
[5] Yu C C, Liu X M, Yu M, Lin C K, Li C X, Wang H and Lin J 2007 J. Solid State Chem. 180 3058
[6] Falin M L, Gerasimov K I, Leushin A M and Khaidukov N M 2008 J. Lumin. 128 1103
[7] Bespalov V F, Kazakov B N, Leushin A M and Safiullin G M 1997 Fiz. Tverd. Tela (St. Petersburg) 39 1030
[8] Bespalov V F, Kazakov B N, Leushin A M and Safiullin G M 1997 Fiz. Tverd. Tela (St. Petersburg) 39 1532
[9] Saines P J, Spencer J R, Kennedy B J, Kubota Y, Minakata C, Hano H, Kato K and Takata M 2007 J. Solid State Chem. 180 3001
[10] Saines P J, Kennedy B J and Elcombe M M 2007 J. Solid State Chem. 180 401
[11] Rietveld H M 1969 J. Appl. Cryst. 2 65
[12] Larson A C and von Dreele R B 2004 General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86--748
[13] Saines P J, Spencer J R, Kennedy B J and Avdeev M 2007 J. Solid State Chem. 180 2991
[14] Eng H W, Barnes P W, Auer B M and Woodward P M 2003 J. Solid State Chem. 175 94
[15] Blass G 1980 Struct. Bond. (Heidelberg: Springer-Verlag) 42 1
[16] Blass G, Dirksen G J, Brixner L H and Crawford M K 1994 J. Alloys Compd. 209 1
[17] van Pieterson L, Heeroma M, de Heer E and Meijerink A 2000 J. Lumin. 91 177
[18] Görller-Walrand C and Binnemans K In: Gschneidner Jr K A and Eyring L (eds) 1996 Handbook on the Physics and Chemistry of Rare Earths (Amsterdam, New York, Oxford: North-holland Publishing Company) 23 250
[19] Li Q Y, Guan Z and Bai F S 2000 Numerical Computation Principles (Beijing: Tsinghua University Press) p294
[20] Zhang Q L, Ning K J, Xiao J, Ding L H, Zhou W L, Liu W P, Yin S T and Jiang H H 2010 Chin. Phys. 19 087501
[21] Newman D J and Betty N G 2000 Crystal Field Handbook (Cambridge: Cambridge University Press) p162
[22] Koster G F, Dimmock J O, Wheeler R G and Statz H 1963 Properties of the Thirty-two Point Groups (Cambridge, Massachusetts: MIT Press) p103
[23] Görller-Walrand G and Binnemans K In: Gschneidner Jr K A and Eyring L (eds) 1996 Handbook on the Physics and Chemistry of Rare Earths (Amsterdam, New York, Oxford: North-holland Publishing Company) 23 182 endfootnotesize
[1] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[2] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[3] Preparation and properties of GAGG:Ce/glass composite scintillation material
Wei-Jie Zhang(张伟杰), Qin-Hua Wei(魏钦华), Xiao Shen(沈潇), Gao Tang(唐高), Zhen-Hua Chen(陈振华), Lai-Shun Qin(秦来顺), and Hong-Sheng Shi(史宏声). Chin. Phys. B, 2021, 30(7): 074205.
[4] Spectra properties of Yb3+, Er3+: Sc2SiO5 crystal
Yanyan Xue(薛艳艳), Lihe Zheng(郑丽和), Dapeng Jiang(姜大朋), Qinglin Sai(赛青林), Liangbi Su(苏良碧), Jun Xu(徐军). Chin. Phys. B, 2019, 28(3): 037802.
[5] Transition intensity calculation of Yb: YAG
Hong-Bo Zhang(张洪波), Qing-Li Zhang(张庆礼), Xing Wang(王星), Gui-Hua Sun(孙贵花), Xiao-Fei Wang(王小飞), De-Ming Zhang(张德明), Dun-Lu Sun(孙敦陆). Chin. Phys. B, 2018, 27(6): 067801.
[6] Polymer waveguide thermo-optical switch with loss compensation based on NaYF4: 18% Yb3+, 2% Er3+ nanocrystals
Gui-Chao Xing(邢桂超), Mei-Ling Zhang(张美玲), Tong-He Sun(孙潼鹤), Yue-Wu Fu(符越吾), Ya-Li Huang(黄雅莉), Jian Shao(邵健), Jing-Rong Liu(刘静蓉), Fei Wang(王菲), Da-Ming Zhang(张大明). Chin. Phys. B, 2018, 27(11): 114218.
[7] Shape controllable synthesis and enhanced upconversion photoluminescence of β-NaGdF4:Yb3+, Er3+ nanocrystals by introducing Mg2+
Yong-Xin Yang(杨永馨), Zheng Xu(徐征), Su-Ling Zhao(赵谡玲), Zhi-Qin Liang(梁志琴), Wei Zhu(朱薇), Jun-Jie Zhang(张俊杰). Chin. Phys. B, 2017, 26(8): 087801.
[8] Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb3+: GdTaO4
Qingli Zhang(张庆礼), Guihua Sun(孙贵花), Kaijie Ning(宁凯杰), Chaoshu Shi(施朝淑), Wenpeng Liu(刘文鹏), Dunlu Sun(孙敦陆), Shaotang Yin(殷绍唐). Chin. Phys. B, 2016, 25(11): 117802.
[9] 2.0-μm emission and energy transfer of Ho3+/Yb3+ co-doped LiYF4 single crystal excited by 980 nm
Yang Shuo (杨硕), Xia Hai-Ping (夏海平), Jiang Yong-Zhang (姜永章), Zhang Jia-Zhong (张加忠), Jiang Dong-Sheng (江东升), Wang Cheng (王成), Feng Zhi-Gang (冯治刚), Zhang Jian (张健), Gu Xue-Mei (谷雪梅), Zhang Jian-Li (章践立), Jiang Hao-Chuan (江浩川), Chen Bao-Jiu (陈宝玖). Chin. Phys. B, 2015, 24(6): 067802.
[10] A 1.7-ps pulse mode-locked Yb3+:Sc2SiO5 laser with a reflective graphene oxide saturable absorber
Ge Ping-Guang (葛平广), Su Li-Ming (苏黎明), Liu Jie (刘杰), Zheng Li-He (郑丽和), Su Liang-Bi (苏良碧), Xu Jun (徐军), Wang Yong-Gang (王勇刚). Chin. Phys. B, 2015, 24(1): 014207.
[11] Up-conversion luminescence properties and energy transfer of Er3+/Yb3+ co-doped oxyfluoride glass ceramic containing CaF2 nano-crystals
Ma Chen-Shuo (马辰硕), Jiao Qing (焦清), Li Long-Ji (李龙基), Zhou Da-Cheng (周大成), Yang Zheng-Wen (杨正文), Song Zhi-Guo (宋志国), Qiu Jian-Bei (邱建备). Chin. Phys. B, 2014, 23(5): 057802.
[12] Spectroscopic properties and mechanism of Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals
Hu Yue-Bo (胡曰博), Qiu Jian-Bei (邱建备), Zhou Da-Cheng (周大成), Song Zhi-Guo (宋志国), Yang Zheng-Wen (杨正文), Wang Rong-Fei (王荣飞), Jiao Qing (焦清), Zhou Da-Li (周大利). Chin. Phys. B, 2014, 23(2): 024205.
[13] Calculating Hamiltonian parameters for Yb3+ in a low-symmetry lattice site, and fitting the structure and levels of Yb3+:RETaO4 (RE=Gd, Y, and Sc)
Zhang Qing-Li (张庆礼), Ning Kai-Jie (宁凯杰), Ding Li-Hua (丁丽华), Liu Wen-Peng (刘文鹏), Sun Dun-Lu (孙敦陆), Jiang Hai-He (江海河), Yin Shao-Tang (殷绍唐). Chin. Phys. B, 2013, 22(6): 067105.
[14] Intense up-conversion emissions of Yb3+/Dy3+ co-doped Al2O3 nanopowders prepared by non-aqueous sol–gel method
Li Cheng-Ren (李成仁), Li Shu-Feng (李淑凤), Dong Bin (董斌), Sun Jing-Chang (孙景昌), Bo Xiao-Feng (卜晓峰), Fan Xu-Nan (范旭楠). Chin. Phys. B, 2012, 21(9): 097803.
[15] Photoluminescence of an Yb3+/Al3+-codoped microstructured optical fibre
Xia Chang-Ming(夏长明), Zhou Gui-Yao(周桂耀), Han Ying(韩颖), and Hou Lan-Tian(侯蓝田) . Chin. Phys. B, 2011, 20(8): 087802.
No Suggested Reading articles found!