Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077803    DOI: 10.1088/1674-1056/19/7/077803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced optical transmission through double-layer gold slit arrays

Xie Su-Xia(谢素霞)a)b), Li Hong-Jian(李宏建)a)b)†, Zhou Xin(周昕)a)b), Xu Hai-Qing(徐海清)a), and Fu Shao-Li(付少丽)a)
a College of Physics Science and Technology, Central South University, Changsha 410083, China; b College of Materials Science and Engineering, Central South University, Changsha 410083, China
Abstract  We investigate the relationship between the transmission and the layer distance of double-layer gold slit arrays by using the finite-difference time-domain method. The results show that the transmission properties can be influenced strongly by layer distance. We attribute the two types of resonant modes to surface plasmon resonance and the localised waveguide resonance. We find that the localised waveguide transmission peak redshifts and becomes broader with increasing layer distance D. We also describe and explain the splitting, shift, and degeneration of the surface plasmon resonant transmission peak theoretically. In addition, to clarify the physical mechanism of the transmission behaviours, we analyse the distributions of electric field and total energy for the three transmission peaks with distance D=45 nm for the double-layer system. Light transporting behaviours are mostly concentrated in the region of the slits as well as the interspaces of the two layers, and for different resonant wavelengths the electric field and energy distributions are different. It is expected that the results obtained here will be helpful for designing subwavelength metallic grating devices.
Keywords:  slit array      layer distance      localised waveguide resonance      surface plasmon resonance  
Received:  12 June 2009      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  02.70.Bf (Finite-difference methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60708014), the Science Foundation for Post-doctorate of China (Grant No. 2004035083), the Natural Science Foundation of Hunan Province of China (Grant No. 06JJ2034), the Excellent Doctorate Dissertation Foundation of Central South University of China (Grant No. 2008yb039) and the Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX2009B029).

Cite this article: 

Xie Su-Xia(谢素霞), Li Hong-Jian(李宏建), Zhou Xin(周昕), Xu Hai-Qing(徐海清), and Fu Shao-Li(付少丽) Enhanced optical transmission through double-layer gold slit arrays 2010 Chin. Phys. B 19 077803

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature (London) 391 667
[2] Mart'hin-Moreno L, Garc'hia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett. 86 1114
[3] Salomon L, Grillot F D, Zayats A V and Fornel F D 2001 Phys. Rev. Lett. 86 1110
[4] Ruan Z and Qiu M 2006 Phys. Rev. Lett. 96 233901
[5] Cheng C, Chen J, Shi D J, Wu Q Y, Ren F F, Xu J, Fan Y X, Ding J P and Wang H T 2008 Phys. Rev. B 78 075406
[6] Darmanyan S A and Zayats A V 2003 Phys. Rev. B 67 035424
[7] Ren X B, Zhai T R, Ren Z, Lin J, Zhou J and Liu D H, 2009 Acta Phys. Sin. 58 3208 (in Chinese)
[8] Chen X J, Wu L J, Hu W and Lan S 2009 Acta Phys. Sin. 58 1025 (in Chinese)
[9] Baida F I and van Labeke D 2003 Phys. Rev. B 67 155314
[10] Garcia de Abajo F J, Gomez-Santos G, Blanco L A, Borisov A G and Shabanov S V 2005 Phys. Rev. Lett. 95 067403
[11] Meng T H, Zhao G Z and Zhang C L 2008 Acta Phys. Sin. 57 3846 (in Chinese)
[12] Feng T H, Dai Q F, Wu L J, Guo Q, Hu W, Lan S 2008 Chin. Phys. B 17 4533
[13] Marcet Z, Kwangje W, Tanner D B, Carr D W, Bower J E, Cirelli R A, Ferrt E, Klemens F, Miner J and Taylor C S 2006 Opt. Lett. 31 516
[14] Marcet Z, Paster J W, Carr D W, Bower J E, Cirelli R A, Klemens F, Mansfield W M, Miner J F, Pai C S and Chan H B 2008 Opt. Lett. 33 1410
[15] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[16] Berenger J P 1994 J. Comput. Phys. 114 185
[17] Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Jr Alexander R W and Ward C A 1983 Appl. Opt. 22 1099
[18] Zhou R L, Chen X S, Zeng Y, Zhang J B, Chen H B, Wang S W, Lu W, Li H J, Xia H and Wang L L 2008 Acta Phys. Sin. 57 3506 (in Chinese)
[19] Xing Q R, Li S X, Tian Z, Liang D, Zhang N, Lang L Y, Chai L and Wang Q Y 2006 Appl. Phys. Lett. 89 041107
[20] Matsui T, Agrawal A, Nahata A and Vardeny Z V 2007 Nature (London) 446 517
[21] Xu T, Du C L, Wang C T and Luo X G 2007 Appl. Phys. Lett. 91 201501
[22] Zhou M, Chen X S, Wang S W, Zhang J B and Lu W 2006 Acta Phys. Sin. 55 3725 (in Chinese)
[23] Shi H F, Wang C T, Du C L, Luo X G, Dong X C and Gao H T 2005 Opt. Express 13 6815
[24] Wang C T, Du C L and Luo X G 2006 Phys. Rev. B 74 245403
[25] Hibbins A P, Hooper I R, Lockyear M J and Sambles J R 2006 Phys. Rev. Lett. 96 257402
[26] Popov E, Neviere M, Enoch S and Reinisch R 2000 Phys. Rev. B 62 16100
[27] Zayats A V, Smolyaninov I I and Maradudin A A 2005 Phys. Rep. 408 131
[28] Li H J, Xie S X, Zhou R L, Liu Q, Zhou X and Yuan M 2008 J. Phys.: Condens. Matter 20 415223
[29] Shen J T, Catrysse P B and Fan S H 2005 Phys. Rev. Lett. 94 197401
[30] Hou B, Mei J, Ke M Z, Wen W J, Liu Z Y, Shi J and Sheng P 2007 Phys. Rev. B 76 054303 endfootnotesize
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[5] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[6] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[7] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[8] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[9] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[10] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[11] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[12] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[13] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[14] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[15] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
No Suggested Reading articles found!