Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 067402    DOI: 10.1088/1674-1056/19/6/067402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Simulation of dielectric resonator for high-Tc radio frequency superconducting quantum interference device

Gao Ji(高吉), Yang Tao(杨涛), Ma Ping(马平), and Dai Yuan-Dong(戴远东)
School of Physics and State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871, China
Abstract  Nowadays, the high-critical-temperature radio frequency superconducting quantum interference device (high-$T_{\rm c }$ rf SQUID) is usually coupled to a dielectric resonator that is a standard $10\times 10\times 1$ mm3 SrTiO3 (STO) substrate with a YBa2Cu3O$_{7 - \delta}$  (YBCO) thin-film flux focuser deposited on it. Recently, we have simulated a dielectric resonator for the high-$T_{\rm c}$ rf SQUID by using the ANSOFT High Frequency Structure Simulator (ANSOFT HFSS). We simulate the resonant frequency and the quality factor of our dielectric resonator when it is unloaded or matches a 50-$\Omega$ impedance. The simulation results are quite close to the practical measurements. Our study shows that ANSOFT HFSS is quite suitable for simulating the dielectric resonator used for the high-Tc rf SQUID. Therefore, we think the ANSOFT HFSS can be very helpful for investigating the characteristics of dielectric resonators for high-Tc rf SQUIDs.
Keywords:  dielectric resonator      YBCO      rf SQUID      HFSS  
Received:  10 November 2009      Accepted manuscript online: 
PACS:  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  85.25.Am (Superconducting device characterization, design, and modeling)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
  74.62.-c (Transition temperature variations, phase diagrams)  
  74.78.Bz  
Fund: Project supported by the National Basic Research Program of China (Grant No.~2006CB601007), the National Natural Science Foundation of China (Grant No.~10674006), the National High Technology Research and Development Program of China (Grant No.~2007AA03Z2

Cite this article: 

Gao Ji(高吉), Yang Tao(杨涛), Ma Ping(马平), and Dai Yuan-Dong(戴远东) Simulation of dielectric resonator for high-Tc radio frequency superconducting quantum interference device 2010 Chin. Phys. B 19 067402

[1] Bednorz J G and Mü ller K A 1986 Z. Phys. {\rm B: Condens. Matter 64 189
[2] Koelle D, Kleiner R, Ludwig F, Dantsker E and Clarke J 1999 Rev. Mod. Phys. 71 631
[3] Daly K P, Dozier W D, Burch J F, Coons S B, Hu R, Platt C E and Simon R W 1991 Appl. Phys. Lett. 58 543
[4] Zhang Y, Mü ck H M, Herrmann K, Schubert J, Zander W, Braginski A I and Heiden C 1992 Appl. Phys. Lett. 60 645
[5] Zhang Y, Mü ck M, Braginski A I and Toepfer H 1994 Supercond. Sci. Technol. 7 269
[6] Zhang Y, Zander W, Schubert J, Rü ders F, Soltner H, Banzet M, Wolters N, Zeng X H and Braginski A I 1997 Appl. Phys. Lett. 71 704
[7] Xie F X, Yang T, Ma P, Nie R J, Liu L Y, Wang F R, Wang S Z, Wang S G and Dai Y D CN1352469 [2002-06-05] (in Chinese)
[8] Zhang Y, Schubert J, Wolters N, Banzet M, Zander W and Krause H J 2002 Physica C 372--376 282
[9] Liu X Y, Xie F X, Meng S C, Ma P, Yang T, Nie R J, Wang S Z, Wang F R and Dai Y D 2003 Acta Phys. Sin. 52 2580 (in Chinese)
[10] Liu X Y, Xie F X, Meng S C, Dai Y D, Li Z Z, Ma P, Yang T, Nie R J and Wang F R 2004 Chin. Phys. 13 100
[11] Mao H Y, Wang F R, Meng S C, Mao B, Li Z Z, Nie R J, Liu X Y and Dai Y D 2005 Chin. J. Low Temp. Phys. 27 269 (in Chinese)
[12] He D F and Itozaki H 2006 J. Appl. Phys. 99 123911
[1] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[2] Enhancing superconductivity of ultrathin YBa2Cu3O7-δ films by capping non-superconducting oxides
Hai Bo(薄海), Tianshuang Ren(任天爽), Zheng Chen(陈峥), Meng Zhang(张蒙), Yanwu Xie(谢燕武). Chin. Phys. B, 2019, 28(6): 067402.
[3] All-dielectric frequency selective surface design based on dielectric resonator
Zheng-Bin Wang(王正斌), Chao Gao(高超), Bo Li(李波), Zhi-Hang Wu(吴知航), Hua-Mei Zhang(张华美), Ye-Rong Zhang (张业荣). Chin. Phys. B, 2016, 25(6): 068101.
[4] Strongly enhanced flux pinning in the YBa2Cu3O7-X films with the co-doping of BaTiO3 nanorod and Y2O3 nanoparticles at 65 K
Wang Hong-Yan (王洪艳), Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾). Chin. Phys. B, 2015, 24(9): 097401.
[5] Fabrication and properties of high performance YBa2Cu3O7-δ radio frequency SQUIDs with step-edge Josephson junctions
Liu Zheng-Hao (刘政豪), Wei Yu-Ke (魏玉科), Wang Da (王达), Zhang Chen (张琛), Ma Ping (马平), Wang Yue (王越). Chin. Phys. B, 2014, 23(9): 097401.
[6] Magnetization of Gd diffused Yba2Cu3O7-x superconductor:Experiment and theory
F. Inanira, Ş. Yildizb, K. Ozturkc, S. Celebic. Chin. Phys. B, 2013, 22(7): 077402.
[7] Analysis and design of the taper in metal-grating periodic slow-wave structures for rectangular Cerenkov masers
Chen Ye(陈晔), Zhao Ding(赵鼎), Wang Yong(王勇), and Shu Wen(舒雯) . Chin. Phys. B, 2012, 21(5): 058401.
[8] A model for the chain-to-plane charge transfer in YBa2Cu3O6+x
V. M. Matic, N. Dj. Lazarov, M. Milic. Chin. Phys. B, 2012, 21(11): 117401.
[9] Influence of oxygen pressure on critical current density and magnetic flux pinning structures in YBa2Cu3O7-x fabricated by chemical solution deposition
Ding Fa-Zhu(丁发柱), Gu Hong-Wei(古宏伟), Zhang Teng(张腾), Dai Shao-Tao(戴少涛), and Xiao Li-Ye(肖立业). Chin. Phys. B, 2011, 20(2): 027402.
[10] All-dielectric left-handed metamaterial based on dielectric resonator: design, simulation and experiment
Yang Yi-Ming(杨一鸣), Wang Jia-Fu(王甲富), Xia Song(夏颂), Bai Peng(柏鹏), Li Zhe(李哲), Wang Jun(王军), Xu Zhuo(徐卓), and Qu Shao-Bo(屈绍波) . Chin. Phys. B, 2011, 20(1): 014101.
[11] Study on reaction mechanism of YBa2Cu3O7-x film by TFA-MOD process
Ding Fa-Zhu(丁发柱), ü Xu-Dong(吕旭东), Gu Hong-Wei(古宏伟), Li Tao(李弢), and Cao Jiang-Li(曹江利). Chin. Phys. B, 2009, 18(4): 1631-1636.
[12] Superconductivity without dependence on valenceelectron density in Zn doped YBCO systems
Li Ping-Lin(李平林), Wang Yong-Yong(王永永), Tian Yong-Tao(田永涛), Wang Jing(汪静), Niu Xiao-Li(牛晓丽), Wang Jun-Xi(王俊喜), Wang Dan-Dan(王单丹), and Wang Xiao-Xia(王晓霞). Chin. Phys. B, 2008, 17(9): 3484-3489.
[13] A study on the microwave responses of YBCO and TBCCO thin films by coplanar resonator technique
Shi Li-Bin(史力斌), Wang Yun-Fei(王云飞), Ke Yu-Yang(柯于洋), Zhang Guo-Hua(张国华), Luo Sheng(罗胜), Zhang Xue-Qiang(张雪强), Li Chun-Guang(李春光), Li Hong(黎红), and He Yu-Sheng(何豫生) . Chin. Phys. B, 2007, 16(10): 3036-3041.
[14] Deposition and characterization of YBCO/CeO2/YSZ/CeO2 multilayers on biaxially textured Ni substrates
"Wang Shu-Fang (王淑芳), Zhao Song-Qing (赵嵩卿), Liu Zhen (刘震), Zhou Yue-Liang (周岳亮), Chen Zheng-Hao (陈正豪), Lü Hui-Bin (吕惠宾), Jin Kui-Juan (金奎娟), Cheng Bo-Lin (程波林), Yang Guo-Zhen (杨国桢). Chin. Phys. B, 2006, 15(2): 444-448.
[15] Intrinsic flux noise level of an rf SQUID involving two Josephson junctions connected in series
Mao Bo (毛博), Dai Yuan-Dong (戴远东), Wang Fu-Ren (王福仁). Chin. Phys. B, 2005, 14(2): 301-305.
No Suggested Reading articles found!