Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 030201    DOI: 10.1088/1674-1056/19/3/030201
GENERAL   Next  

The periodic solution to the model for the El Ni?o-Southern oscillation

Li Xiao-Jing(李晓静)
College of Mathematics and Physics, Jiangsu Teachers University of Technology, Changzhou 213001, China
Abstract  A class of oscillator of the El Ni?o-Southern oscillation model is considered. Using Mawhin's continuation theorem, a result on the existence of periodic solutions for ENSO model is obtained.
Keywords:  nonlinear      coincidence degree      periodic solution      ENSO model  
Received:  14 June 2009      Revised:  28 August 2009      Accepted manuscript online: 
PACS:  92.10.am (El Nino Southern Oscillation)  
  92.05.Df (Climate and inter-annual variability)  
  92.10.Kp (Sea-air energy exchange processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~40676016), the Natural Science Foundation of Jiangsu Province of China (Grant Nos.~BK2009105 and BK2008119), the Natural Science Foundation of Jiangsu Education Committee, China (Grant Nos.~09kjd110001 and 08kjb110011), Key Natural Science Foundation by the Bureau of Education of Anhui Province of China (Grant No.~KJ2008A05ZC) and Jiangsu Teachers University of Technology Foundation (Grant No.~KYY08033).

Cite this article: 

Li Xiao-Jing(李晓静) The periodic solution to the model for the El Ni?o-Southern oscillation 2010 Chin. Phys. B 19 030201

[1] Feng G L, Dong W J, Jia X J and Cao H X 2002 Acta Phys. Sin. 51 1181 (in Chinese)
[2] Liu S K, Fu Z T, Liu S D and Zhao Q A 2002 Acta Phys. Sin. 51 10 (in Chinese)
[3] Feng G L, Dai X G and Wang A H 2001 Acta Phys. Sin. 50 606 (in Chinese)
[4] Wang C Z 2001 Advances in Atmospheric Sciences 18 674
[5] McPhaden M J and Zhang D 2002 Nature 415 603
[6] Gu D F and Philander S G H 1997 Science 275 805
[7] Mo J Q and Lin W T 2005 Acta Phys. Sin. 54 993 (in Chinese)
[8] Mo J Q, Lin W T and Zhu J 2006 Advances in Math. 35 232
[9] Mo J Q, Lin W T and Wang H 2007 Chin. Phys. 16 578
[10] Li X J 2007 Chin. Phys. 16 2837
[11] Li X J 2008 Chin. Phys. B 17 1946
[12] Li X J 2008 Acta Phys. Sin. 57 5366 (in Chinese)
[13] Li X J 2010 Chin. Phys. B 19 020202
[14] Gaines R E and Mawhin J L 1977 Coincidence Degree and NonlinearDifferential Equations (Berlin: Springer)
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[6] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[7] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[8] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[9] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[10] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[11] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[12] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[13] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[14] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[15] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
No Suggested Reading articles found!