Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127806    DOI: 10.1088/1674-1056/19/12/127806
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Plasmonic interactions between a perforated gold film and a thin gold film

Zhou Xin(周昕)a)b), Li Hong-Jian(李宏建)a)b), Xie Su-Xia(谢素霞)a)b), Fu Shao-Li(付少丽)a),Xu Hai-Qing(徐海清)a), and Wu Jin-Jun(吴金军)a)
a College of Physics Science and Technology, Central South University, Changsha 410083, China; b College of Materials Science and Engineering, Central South University, Changsha 410083, China
Abstract  Based on the finite difference time domain method, we investigated theoretically the optical properties and the plasmonic interactions between a gold film perforated with periodic sub-wavelength holes and a thin gold film. We showed that the plasmon resonant energies and intensities depend strongly on the thicknesses of the two films and the lattice constant. Based on the distributions of normal electric field component Ez, tangential electric field component Ey and total energy, we showed that the optical transmission is due to the collaboration of the localized waveguide resonance, the surface plasmon resonance and the coupling of the flat-surface plasmon of the two layers.
Keywords:  plasmonic interaction      localized waveguide resonance      surface plasmon resonance      surface plasmon coupling  
Received:  31 January 2010      Revised:  05 April 2010      Accepted manuscript online: 
PACS:  68.55.-a (Thin film structure and morphology)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.66.Bz (Metals and metallic alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60708014), the Science Foundation for Post-doctorate of China (Grant No. 2004035083), the Natural Science Foundation of Hunan Province of China (Grant No. 06JJ2034), the Excellent Doctorate Dissertation Foundation of Central South University (Grant No. 2008yb039) and the Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX2009B029).

Cite this article: 

Zhou Xin(周昕), Li Hong-Jian(李宏建), Xie Su-Xia(谢素霞), Fu Shao-Li(付少丽),Xu Hai-Qing(徐海清), and Wu Jin-Jun(吴金军) Plasmonic interactions between a perforated gold film and a thin gold film 2010 Chin. Phys. B 19 127806

[1] Genet C and Ebbesen T W 2007 Nature (London) 445 39
[2] Tang Z H, Peng R W, Wang Z, Wu X, Bao Y J, Wang Q J, Zhang Z J, Sun W H and Wang M 2007 Phys. Rev. B 76 195405
[3] Bozhevolnyi S I, Volkov E D V S, Laluet J Y and Ebbeson T W 2006 Nature (London) 440 508
[4] Ma J Y, Xu C, Liu S J, Zhang D W, Jin Y X, Fan Z X and Shao J D 2009 Chin. Phys. B 18 1029
[5] Zou S L and Schatz G C 2005 Chem. Phys. Lett. 403 62
[6] Genet C and Ebbesen T W 2007 Nature (Landon) 445 39
[7] Barnes W L, Dereux A and Ebbesen T W 2003 Nature (London) 424 824
[8] Maier S A and Atwater H A 2005 J. Appl. Phys. 98 011101
[9] Zayats A V and Smolyaninov I I 2003 J. Opt. A: Pure Appl. Opt. 5 S16
[10] Veselago V G 1968 Sov. Phys. Usp. 10 509
[11] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theor. Tech. 47 2075
[12] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature (London) 391 667
[13] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[14] Ruan Z C and Qiu M 2006 Phys. Rev. Lett. 96 233901
[15] Li H J, Xie S X, Zhou R L, Liu Q, Zhou X and Yuan M 2008 J. Phys.: Condens. Matter 20 415223
[16] Chen Y G, Wang Y H, Zhang Y and Liu S T 2007 Opt. Commun. 274 236
[17] Taflove A and Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd. edn. (Norwood: Artech House INC)
[18] Baida F I and Van Labeke D 2003 Phys. Rev. B 67 155314
[19] Müller R, Malyarchuk V and Lienau C 2003 Phys. Rev. B 68 205415
[20] Tang Z H, Peng R W, Wang Z, Wu X, Bao Y J, Wang Q J, Zhang Z J, Sun W H and Wang M 2007 Phys. Rev. B 76 195405
[21] Wood R W 1902 Proc. R. Soc. London A 18 269
[22] Garc'hia N and Nieto-Vesperinas M 2007 J. Opt. A: Pure Appl. Opt. 9 490
[23] Huang X R, Peng R W, Wang Z, Gao F and Jiang S S 2007 Phys. Rev. A 76 035802
[24] Palik E D 1991 Handbook of Optical Constants in Solids (Boston: Academic) Vol. 1
[25] Hou B, Mei J, Ke M Z, Wen W J, Liu Z Y, Shi J and Sheng P 2007 Phys. Rev. B 76 054303
[26] Beruete M, Sorolla M, Campillo I, Dolado J S, Martin-Moreno L, Bravo-Abad J and Garcia-Vidal F J 2005 IEEE Trans. Antennas Propag. 53 1897
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[5] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[6] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[7] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[8] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[9] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[10] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[11] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[12] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[13] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[14] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[15] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
No Suggested Reading articles found!