CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Structure, room-temperature magnetic and optical properties of Mn-doped TiO2 nano powders prepared by the sol–gel process |
Ding Peng(丁芃),Liu Fa-Min(刘发民)†,Zhou Chuang-Cang(周传仓), Zhong Wen-Wu(钟文武), Zhang Huan(张嬛), Cai Lu-Gang(蔡鲁刚), and Zeng Le-Gui(曾乐贵) |
Department of Physics, School of Physics and Nuclear Energy Engineering, Key Laboratory of Micro-nano Measurement-Manipulation and Physics (Ministry of Education), Beijing University of Aeronautics and Astronautics, Beijing 100191, China |
|
|
Abstract TiO2 nano powders with Mn concentration of 0 at%-12 at% were synthesized by the sol–gel process, and were annealed at 500 ℃ and 800 ℃ in air for 2 hrs. X-ray diffraction (XRD) measurements indicate that the Mn–TiO2 nano powders with Mn concentration of 1 at% and 2 at% annealed at 500 and 800 ℃ are of pure anatase and rutile, respectively. The scanning electron microscope (SEM) observations reveal that the crystal grain size increases with the annealing temperature, and the high resolution transmission electron microscopy (HRTEM) investigations further indicate that the samples are well crystallized, confirming that Mn has doped into the TiO2 crystal lattice effectively. The room temperature ferromagnetism, which could be explained within the scope of the bound magnetic polaron (BMP) theory, is detected in the Mn–TiO2 samples with Mn concentration of 2 at%, and the magnetization of the powders annealed at 500 ℃ is stronger than that of the sample treated at 800 ℃. The UV–VIS diffuse reflectance spectra results demonstrate that the absorption of the TiO2 powders could be enlarged by the enhanced trapped electron absorption caused by Mn doping.
|
Received: 19 April 2010
Revised: 21 May 2010
Accepted manuscript online:
|
PACS:
|
61.46.Df
|
(Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
78.40.Ha
|
(Other nonmetallic inorganics)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
81.16.-c
|
(Methods of micro- and nanofabrication and processing)
|
|
81.40.Gh
|
(Other heat and thermomechanical treatments)
|
|
Fund: Project supported by the Innovation Foundation of BUAA for PhD Graduates (Grant No. 292122) and Equipment Research Foundation of China. |
Cite this article:
Ding Peng(丁芃),Liu Fa-Min(刘发民),Zhou Chuang-Cang(周传仓), Zhong Wen-Wu(钟文武), Zhang Huan(张嬛), Cai Lu-Gang(蔡鲁刚), and Zeng Le-Gui(曾乐贵) Structure, room-temperature magnetic and optical properties of Mn-doped TiO2 nano powders prepared by the sol–gel process 2010 Chin. Phys. B 19 118102
|
[1] |
Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S and Koinuma H 2001 Science 291 854
|
[2] |
Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
|
[3] |
Wu S X, Li X Y, Xing X J, Hu P, Yu Y P and Li S W 2009 Appl. Phys. Lett. 94 253504
|
[4] |
Xu J P, Li L, L"u L Y, Zhang X S, Chen X M, Wang J F, Zhang F M, Zhong W and Du Y W 2009 Chin. Phys. Lett. 26 097502
|
[5] |
Sangaletti L, Mozzati M C, Drera G, Galinetto P, Azzoni C B, Speghini A and Bettinelli M 2008 Phys. Rev. B 78 075210
|
[6] |
Akdogan N, Nefedov A, Zabel H, Westerholt K, Becker H W, Somsen C, G"ok cS, Bashir A, Khaibullin R and Tagirov L 2009 J. Phys. D: Appl. Phys. 42 115005
|
[7] |
Mi W B, Jiang E Y and Bai H L 2009 J. Magn. Magn. Mater. 321 2472
|
[8] |
Liu F M, Ding P, Yang X A and Li J Q 2009 Nucl. Instr. Meth. B 267 3104
|
[9] |
Yan W S, Sun Z, Pan Z Y, Liu Q H, Yao T, Wu Z Y, Song C, Zeng F, Xie Y N, Hu T D and Wei S Q 2009 Appl. Phys. Lett. 94 042508
|
[10] |
Huang D, Zhao Y J, Chen D H and Shao Y Z 2009 J. Phys.: Condens. Matter. 21 125502
|
[11] |
Wen Q Y, Gu D E, Zhang H W, Yang Q H, Li Y X, Liu Y L and Xiao J Q 2009 J. Phys. D: Appl. Phys. 42 055012
|
[12] |
Li J, Song G B, Wang M L and Zhang B S 2007 Acta Phys. Sin. 56 3379 (in Chinese)
|
[13] |
Bhattacharyya S, Pucci A, Zitoun D and Gedanken A 2008 Nanotechnology 19 495711
|
[14] |
Tian Z M, Yuan S L, Wang Y Q, He J H, Yin S Y, Liu K L, Yuan S J and Liu L 2008 J. Phys. D: Appl. Phys. 41 055006
|
[15] |
Ding P, Liu F M, Yang X A and Li J Q 2009 Nucl. Instr. Meth. B 267 3109
|
[16] |
Ding P, Liu F M, Yang X A and Li J Q 2008 Chin. Phys. B 17 0721
|
[17] |
Kim K J, Park Y R, Lee J H, Choi S L, Lee H J, Kim C S and Park J Y 2007 J. Magn. Magn. Mater. 316 e215
|
[18] |
Xu J P, Wang J F, Lin Y B, Liu X C, Lu Z L, Lu Z H, L"u L Y, Zhang F M and Du Y W 2007 J. Phys. D: Appl. Phys. 40 4757
|
[19] |
Hong N H, Sakaib J, Prellierc W and Ruyter A 2005 Physica B 355 295
|
[20] |
Osterwalderb J, Droubaya T, Kaspara T, Williamsa J, Wanga C M and Chambers S A 2005 Thin Solid Films 484 289
|
[21] |
Wang Z J, Tang J K, Chen Y X, Zhang H G, Golub V, Spinu L and Tung L D 2004 J. Appl. Phys. 95 7384
|
[22] |
Xu J P, Lin Y B and Lu Z H 2006 Solid State Commun. 140 514
|
[23] |
Hong N H 2006 J. Magn. Magn. Mater. 303 338
|
[24] |
Cabrera A F, Errico L, Rodr'iguez Torres C E and S'anchez F H 2007 Physica B 389 103
|
[25] |
Li X Y, Wu S X, Xu L M, Li C T, Liu Y J, Xing X J and Li S W 2009 Mater. Sci. Eng. B 156 90
|
[26] |
Errico L A, Renter'hia M and Weissmann M 2005 Phys. Rev. B 72 184425
|
[27] |
Arroyo R, Cordoba G, Padilla J and Lara V H 2002 Mater. Lett. 54 397
|
[28] |
Nowotny J, Padecka M and Rekas M 1997 J. Phys. Chem. Solids 58 927
|
[29] |
Bak T, Nowotny J, Rekas M and Sorrell C C 2003 J. Phys. Chem. Solids 64 1057
|
[30] |
Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nature Mater. 4 173
|
[31] |
Simmons E L 1974 Appl. Opt. 14 1380
|
[32] |
Lin H, Huang C P, Li W, Ni C, Shah S I and Tseng Y H 2006 Appl. Catal. B 68 1
|
[33] |
Xu L M, Xing X J, Yang M, Li X Y, Wu S X, Hu P, Lu J Q and Li S W 2010 Appl. Phys. A 98 417
|
[34] |
Pan D Y, Wan J G, Xu G L, L"u L Y, Wu Y J, Min H, Liu J M and Wang G H 2006 J. Am. Chem. Soc. 128 12609
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|