Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 118102    DOI: 10.1088/1674-1056/19/11/118102
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Structure, room-temperature magnetic and optical properties of Mn-doped TiO2 nano powders prepared by the sol–gel process

Ding Peng(丁芃),Liu Fa-Min(刘发民),Zhou Chuang-Cang(周传仓), Zhong Wen-Wu(钟文武), Zhang Huan(张嬛), Cai Lu-Gang(蔡鲁刚), and Zeng Le-Gui(曾乐贵)
Department of Physics, School of Physics and Nuclear Energy Engineering, Key Laboratory of Micro-nano Measurement-Manipulation and Physics (Ministry of Education), Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract  TiO2 nano powders with Mn concentration of 0 at%-12 at% were synthesized by the sol–gel process, and were annealed at 500 ℃ and 800 ℃ in air for 2 hrs. X-ray diffraction (XRD) measurements indicate that the Mn–TiO2 nano powders with Mn concentration of 1 at% and 2 at% annealed at 500 and 800 ℃ are of pure anatase and rutile, respectively. The scanning electron microscope (SEM) observations reveal that the crystal grain size increases with the annealing temperature, and the high resolution transmission electron microscopy (HRTEM) investigations further indicate that the samples are well crystallized, confirming that Mn has doped into the TiO2 crystal lattice effectively. The room temperature ferromagnetism, which could be explained within the scope of the bound magnetic polaron (BMP) theory, is detected in the Mn–TiO2 samples with Mn concentration of 2 at%, and the magnetization of the powders annealed at 500 ℃ is stronger than that of the sample treated at 800 ℃. The UV–VIS diffuse reflectance spectra results demonstrate that the absorption of the TiO2 powders could be enlarged by the enhanced trapped electron absorption caused by Mn doping.
Keywords:  Mn-doped TiO2 nano powders      sol-gel process      room-temperature magnetic properties      diffuse reflectance spectra  
Received:  19 April 2010      Revised:  21 May 2010      Accepted manuscript online: 
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  78.40.Ha (Other nonmetallic inorganics)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
  81.40.Gh (Other heat and thermomechanical treatments)  
Fund: Project supported by the Innovation Foundation of BUAA for PhD Graduates (Grant No. 292122) and Equipment Research Foundation of China.

Cite this article: 

Ding Peng(丁芃),Liu Fa-Min(刘发民),Zhou Chuang-Cang(周传仓), Zhong Wen-Wu(钟文武), Zhang Huan(张嬛), Cai Lu-Gang(蔡鲁刚), and Zeng Le-Gui(曾乐贵) Structure, room-temperature magnetic and optical properties of Mn-doped TiO2 nano powders prepared by the sol–gel process 2010 Chin. Phys. B 19 118102

[1] Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S and Koinuma H 2001 Science 291 854
[2] Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[3] Wu S X, Li X Y, Xing X J, Hu P, Yu Y P and Li S W 2009 Appl. Phys. Lett. 94 253504
[4] Xu J P, Li L, L"u L Y, Zhang X S, Chen X M, Wang J F, Zhang F M, Zhong W and Du Y W 2009 Chin. Phys. Lett. 26 097502
[5] Sangaletti L, Mozzati M C, Drera G, Galinetto P, Azzoni C B, Speghini A and Bettinelli M 2008 Phys. Rev. B 78 075210
[6] Akdogan N, Nefedov A, Zabel H, Westerholt K, Becker H W, Somsen C, G"ok cS, Bashir A, Khaibullin R and Tagirov L 2009 J. Phys. D: Appl. Phys. 42 115005
[7] Mi W B, Jiang E Y and Bai H L 2009 J. Magn. Magn. Mater. 321 2472
[8] Liu F M, Ding P, Yang X A and Li J Q 2009 Nucl. Instr. Meth. B 267 3104
[9] Yan W S, Sun Z, Pan Z Y, Liu Q H, Yao T, Wu Z Y, Song C, Zeng F, Xie Y N, Hu T D and Wei S Q 2009 Appl. Phys. Lett. 94 042508
[10] Huang D, Zhao Y J, Chen D H and Shao Y Z 2009 J. Phys.: Condens. Matter. 21 125502
[11] Wen Q Y, Gu D E, Zhang H W, Yang Q H, Li Y X, Liu Y L and Xiao J Q 2009 J. Phys. D: Appl. Phys. 42 055012
[12] Li J, Song G B, Wang M L and Zhang B S 2007 Acta Phys. Sin. 56 3379 (in Chinese)
[13] Bhattacharyya S, Pucci A, Zitoun D and Gedanken A 2008 Nanotechnology 19 495711
[14] Tian Z M, Yuan S L, Wang Y Q, He J H, Yin S Y, Liu K L, Yuan S J and Liu L 2008 J. Phys. D: Appl. Phys. 41 055006
[15] Ding P, Liu F M, Yang X A and Li J Q 2009 Nucl. Instr. Meth. B 267 3109
[16] Ding P, Liu F M, Yang X A and Li J Q 2008 Chin. Phys. B 17 0721
[17] Kim K J, Park Y R, Lee J H, Choi S L, Lee H J, Kim C S and Park J Y 2007 J. Magn. Magn. Mater. 316 e215
[18] Xu J P, Wang J F, Lin Y B, Liu X C, Lu Z L, Lu Z H, L"u L Y, Zhang F M and Du Y W 2007 J. Phys. D: Appl. Phys. 40 4757
[19] Hong N H, Sakaib J, Prellierc W and Ruyter A 2005 Physica B 355 295
[20] Osterwalderb J, Droubaya T, Kaspara T, Williamsa J, Wanga C M and Chambers S A 2005 Thin Solid Films 484 289
[21] Wang Z J, Tang J K, Chen Y X, Zhang H G, Golub V, Spinu L and Tung L D 2004 J. Appl. Phys. 95 7384
[22] Xu J P, Lin Y B and Lu Z H 2006 Solid State Commun. 140 514
[23] Hong N H 2006 J. Magn. Magn. Mater. 303 338
[24] Cabrera A F, Errico L, Rodr'iguez Torres C E and S'anchez F H 2007 Physica B 389 103
[25] Li X Y, Wu S X, Xu L M, Li C T, Liu Y J, Xing X J and Li S W 2009 Mater. Sci. Eng. B 156 90
[26] Errico L A, Renter'hia M and Weissmann M 2005 Phys. Rev. B 72 184425
[27] Arroyo R, Cordoba G, Padilla J and Lara V H 2002 Mater. Lett. 54 397
[28] Nowotny J, Padecka M and Rekas M 1997 J. Phys. Chem. Solids 58 927
[29] Bak T, Nowotny J, Rekas M and Sorrell C C 2003 J. Phys. Chem. Solids 64 1057
[30] Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nature Mater. 4 173
[31] Simmons E L 1974 Appl. Opt. 14 1380
[32] Lin H, Huang C P, Li W, Ni C, Shah S I and Tseng Y H 2006 Appl. Catal. B 68 1
[33] Xu L M, Xing X J, Yang M, Li X Y, Wu S X, Hu P, Lu J Q and Li S W 2010 Appl. Phys. A 98 417
[34] Pan D Y, Wan J G, Xu G L, L"u L Y, Wu Y J, Min H, Liu J M and Wang G H 2006 J. Am. Chem. Soc. 128 12609
[1] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[2] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[3] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[4] Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2019, 28(4): 047701.
[5] Electrical transport properties of YCo1-xMnxO3 (0≤ x ≤ 0.2) prepared by sol-gel process
Liu Yi (刘义), Li Hai-Jin (李海金). Chin. Phys. B, 2015, 24(4): 047202.
[6] Electrical transport and thermoelectric properties of Ni-doped perovskite-type YCo1-xNixO3 (0≤ x ≤0.07) prepared by sol-gel process
Liu Yi (刘义), Li Hai-Jin (李海金), Zhang Qing (张清), Li Yong (李勇), Liu Hou-Tong (刘厚通). Chin. Phys. B, 2013, 22(5): 057201.
[7] The luminescence enhancement of Eu3+ ion and SnO2 nanocrystal co-doped sol–gel SiO2 films
Zhang Xiao-Wei(张晓伟), Lin Tao(林涛), Xu Jun(徐骏), Xu Ling(徐岭), and Chen Kun-Ji(陈坤基) . Chin. Phys. B, 2012, 21(1): 018101.
[8] Study of refractive index and thickness of TiO2/ormosil planar waveguide
Wang Bao-Ling (王宝玲), Hu Li-Li (胡丽丽). Chin. Phys. B, 2004, 13(11): 1887-1891.
No Suggested Reading articles found!