CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
Left-handedness without absorption in the four-level Y-type atomic medium |
Zhao Shun-Cai(赵顺才)a), Liu Zheng-Dong(刘正东)a)†, and Wu Qi-Xuan(吴奇宣)b) |
a School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China; Engineering Research Center for Nanotechnology, Nanchang University, Nanchang 330047, China; Institute of Modern Physics, Nanchang University, Nanchang 330031, China; b College English department, Hainan University, Danzhou 571737, China |
|
|
Abstract In this paper we have investigated three external fields interacting with the four-level Y-type atomic system described by the density-matrix approach. The results show that left-handedness with zero absorption is achieved. The zero absorption property displays the possibility of manipulation by varying the phase and the intensity of the coupling field. Also, the zero absorption property may be used to amplify the evanescent waves that have been lost in imaging by traditional lenses. We propose an approach to obtain a negative refractive medium with zero absorption and the possibility of enhanceingthe imaging resolution in realizing `superlenses'.
|
Received: 19 May 2009
Revised: 25 June 2009
Accepted manuscript online:
|
PACS:
|
32.80.-t
|
(Photoionization and excitation)
|
|
31.15.-p
|
(Calculations and mathematical techniques in atomic and molecular physics)
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant Nos. 60768001 and
10464002). |
Cite this article:
Zhao Shun-Cai(赵顺才), Liu Zheng-Dong(刘正东), and Wu Qi-Xuan(吴奇宣) Left-handedness without absorption in the four-level Y-type atomic medium 2010 Chin. Phys. B 19 014211
|
[1] |
Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184 [Yu G X and Cui T J 2008 Chin. Phys. B 17 164
|
[2] |
Shelby R A, Smith D R and Schultz S 2001 Science 77 292[Zheng J, Liu Z D, Zeng F H and Fang H J 2008 Acta Phys. Sin. 57 4219 (in Chinese)
|
[3] |
Valanju P M, Walser R M and Valanju A P 2002 Phys. Rev. Lett. 88 187401[Chen Y Y, Huang Z M, Shi J L, Li C F and Wang Q 2007 Chin. Phys. 16 173
|
[4] |
Zheng J, Liu Z D, Zeng F H and Fang H J 2008 Acta Phys. Sin. 57 2218 (in Chinese)[Shen J T and Platzman P M 2002 Appl. Phys. Lett. 80 3286
|
[5] |
Veselago V G 1968 Sov. Phys. Usp. 10 509
|
[6] |
Pendry J B 2000 Phys. Rev. Lett. 85 3966
|
[7] |
Yannopapas V 2006 J. Phys.: Condens. Matter 18 6883
|
[8] |
Pendry J B, Holden A J, Robbins D J and Stewart W J 1998 Phys. Condens. Matter 10 4785
|
[9] |
Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
|
[10] |
Yannopapas V and Moroz A 2005 J. Phys. : Condens. Matter 17 3717
|
[11] |
Wheeler M S, Aitchison J S and Mojahedi M 2005 Phys. Rev. B 72 193103
|
[12] |
Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
|
[13] |
Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 303 1494
|
[14] |
Linden S, Enkrich C, Wegener M, Zhou J, Koschny T and Soukoulis C M 2004 Science 306 1351
|
[15] |
Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L and Soukoulis M 2005 Phys. Rev. Lett. 95 203901
|
[16] |
Pendry J B 2004 Science 306 1353
|
[17] |
Tretyakov S, Shivola A and Jylh? L 2005 Photon. Nanostruct. 3 107
|
[18] |
Eleftheriades G V, Iyer A K and Kremer P C 2004 IEEE Trans. Microwave Theory Tech. 50 2702
|
[19] |
He S, Ruan Z C, Chen L and Shen J Q 2004 Phys. Rev. B 70 115113
|
[20] |
Berrier A, Mulot M, Swillo M, Qiu M, Thylén L, Talneau A and Anand S 2004 Phys. Rev. Lett. 93 073902
|
[21] |
Thommen Q and Mandel P 2006 Opt. Lett. 31 1803
|
[22] |
Parimi1 P V, Lu W T, Vodo1 P, Sokoloff J, Derov J S and Sridhar S 2004 Phys. Rev. Lett. 92 127401
|
[23] |
Berrier A, Mulot M, Swillo M, Qiu M, Thylén L, Talneau A and Anand S 2004 Phys. Rev. Lett. 93 073902
|
[24] |
Lu Z L, Murakowski Janusz A, Schuetz Christopher A, Shi S Y, Schneider Garrett J and Prather Dennis W 2005 Phys. Rev. Lett. 95 153901
|
[25] |
Shen J Q 2006 Phys. Lett. A 357 54
|
[26] |
Oktel M ? and Müstecapliouglu ? E 2004 Phys. Rev. A 70 053806
|
[27] |
Dong Zh G, Lei Sh Y, Xu M X, Liu H, Li T, Wang F M and Zhu S N 2008 Phys. Rev. E 77 056609
|
[28] |
Thommen Q and Mandel P 2006 Phys. Rev. Lett. 96 053601
|
[29] |
Garcia N and Nieto-Vesperinas M 2002 Phys. Rev. Lett. 88 207403
|
[30] |
Ye Z 2003 Phys. Rev. B 67 193106
|
[31] |
Shalaev V M 2007 Nature Photon (London) 1 41
|
[32] |
Drachev V P and Shalaev V M 2006 Laser Phys. Lett. 3 49
|
[33] |
K?stel J, Fleischhauer M, Yelin S F and Walsworth R L 2007 Phys. Rev. Lett. 99 073602
|
[34] |
Gao J Y, He Q Y and Wang T J 2006 Chin. Phys. 15] 1798[Dolling G, Wegener M, Soukoulis C M and Linden S 2007 Opt. Lett. 32 53
|
[35] |
Jackson J D 2001 Classical Electrodynamics (3rd ed) (New York: John Wiley & Sons) p159
|
[36] |
Cook D M 1975 The Theory of the Electromagnetic Field (New Jersey: Prentice-Hall Inc.) Chap. 11
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|