Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 014205    DOI: 10.1088/1674-1056/19/1/014205
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Effects of spatial interference on intensity--intensity correlations in collective two-atom emission

Tan Hua-Tang(谭华堂)
Department of Physics, Huazhong Normal University, Wuhan 430079, China
Abstract  In this paper, we investigate the effects of the spatial variation of driving-laser phase in a collective two-atom system on the intensity--intensity correlations of the resonant fluorescence. It is shown that the intensity--intensity correlations exhibit quite different characteristics for the different values of the spatial phase of the laser at the position of the two atoms in both cases of the weak and strong driving lasers. Our results suggest that the intensity--intensity correlations can serve as a probe of the spatial interference effect arising from the spatial variation of the laser phase.
Keywords:  spatial interference      intensity--intensity correlations      collective two-atomic system  
Received:  26 February 2009      Revised:  08 June 2009      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  32.80.-t (Photoionization and excitation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10804035) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200805111014).

Cite this article: 

Tan Hua-Tang(谭华堂) Effects of spatial interference on intensity--intensity correlations in collective two-atom emission 2010 Chin. Phys. B 19 014205

[1] Ficek Z and Swain S 2005 Quantum Interference and Coherence: Theory and Experiments (Berlin: Springer)[ Ficek Z and Tanas R 2002 Phys. Rep. 372 369
[2] Agarwal G S 1974 Quantum Statistical Theories of Spontaneous Emission and their Relation to other Approaches, Springer Tracts in Modern Physics 70 (New York: Springer)
[3] Dicke R H 1954 Phys. Rev. 93 99
[4] Agarwal G S, Narducci L M, Feng D H and Gilmore R 1979 Phys. Rev. Lett. 42 1260
[5] Freedhoff H S 1979 Phys. Rev. A 19 1132
[6] Cordes J G and MacAulay C E 1982 Phys. Rev. A 26 1521
[7] Ficek Z, Tanas R and Kielich S 1983 Opt. Acta 30 713
[8] Ficek Z and Sanders B C 1990 Phys. Rev. A 41 359
[9] Rudolph T G, Ficek Z and Dalton B J 1995 Phys. Rev. A 52 636
[10] Macovei M, Evers J and Keitel C H 2003 Phys. Rev. Lett. 91 233601[ Macovei M, Evers J and Keitel C H 2003 Phys. Rev. Lett. 91 123601
[11] Yang Y P, Xu J P, Chen H and Zhu S Y 2008 Phys. Rev. Lett. 100] 043601
[12] Tanas R and Ficek Z 2004 J. Opt. B: Quantum Semiclassical Opt. 6] 90[ Tanas R and Ficek Z 2004 J. Opt. B: Quantum Semiclassical Opt. 6 610
[13] Ficek Z and Tanas R 2006 Phys. Rev. A 74] 024304[ Ficek Z and Tanas R 2008 Phys. Rev. A 77 054301
[14] Das S, Agarwal G S and Scully M O 2008 Phys. Rev. Lett. 101 153601
[15] Rist S, Eschner J, Hennrich M and Morigi G 2008 Phys. Rev. A 78 013808
[16] Chang J T, Evers J and Zubairy M S 2006 Phys. Rev. A 74] 043820
[17] Das S and Agarwal G S 2008 Phys. Rev. A 77 033850
[18] Agarwal G S, von Zanthier J, Skornia C and Walther H 2002 Phys. Rev. A 65 053826
[19] Gao S Y, Li F L and Zhu S Y 2002 Phys. Rev. A 66 043806
[20] Eschner J, Raab C, Schmidt-Kaler F and Blatt R 2001 Nature (London) 413 495
[21] Hettich C, Schmitt C, Zitzmamn J, Kuhn S, Gerhardt I and Sandoghdar V 2002 Science 298 385
[22] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala and Kimble K J 2008 Science 319 1062
[23] Zhou Q P and Fang M F 2004 Chin. Phys. 13] 1477[ Wu Y, Payne M G, Hagley E W and Deng L 2004 Phys. Rev. A 69 063803[ Xiang S H, Shao B and Song K H 2009 Chin. Phys. B 18 418
[24] Lehmberg R H 1970 Phys. Rev. A 2 883
[25] Meystre P and Sargent M 1991 Elements of Quantum Optics (Heidelberg: Springer-Verlag)
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[3] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[4] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[9] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(6): 064203.
[10] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[11] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[12] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[13] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[14] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[15] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
No Suggested Reading articles found!