Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(11): 4734-4737    DOI: 10.1088/1674-1056/18/11/021
GENERAL Prev   Next  

Quantum backreaction of quantum fluid in Bose--Einstein condensates

Xu Yan(徐岩)a), Xiong Zu-Zhou(熊祖周)b), Chen Bing(陈兵)a), Li Zhao-Xin(李照鑫)a), and Tan Lei(谭磊)b)
a College of Science, Shandong University of Science & Technology, Qingdao 266000, China; b Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China
Abstract  In this paper, with the full field operator $\hat{\psi}$  expressed in terms of a particle-number-conserving mean-field ansatz, we investigate the dynamical behaviour of Bose--Einstein condensates from microscopic physics. Including the first-order term correction from single-particle excitation and the remaining higher-order term correction from collective excitations simultaneously, we obtain the formulation for a closed local expression of quantum backreaction Q, and discuss the influence on static Bose--Einstein condensates. Even though the quantum backreaction is small, it still has some influence on its dynamics.
Keywords:  Bose--Einstein condensate      quantum fluctuation      mean-field theory  
Received:  12 March 2009      Revised:  10 May 2009      Accepted manuscript online: 
PACS:  05.30.Ch (Quantum ensemble theory)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10704031 and 1087150), the Scientific Research Foundation for Returned Scholars, Ministry of Education of China, the Foundation of Shandong Educational Committee, China (Grant No J08LI60), and the Research Project of `SUST Spring Bud', China (Grant No 2008AZZ093).

Cite this article: 

Xu Yan(徐岩), Xiong Zu-Zhou(熊祖周), Chen Bing(陈兵), Li Zhao-Xin(李照鑫), and Tan Lei(谭磊) Quantum backreaction of quantum fluid in Bose--Einstein condensates 2009 Chin. Phys. B 18 4734

[1] Effects of electron correlation on superconductivity in the Hatsugai-Kohmoto model
Huai-Shuang Zhu(祝怀霜) and Qiang Han(韩强). Chin. Phys. B, 2021, 30(10): 107401.
[2] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[3] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[4] Dyson-Maleev theory of an X X Z ferrimagnetic spin chain with single-ion anisotropy
Yu-Ge Chen(陈宇戈), Yin-Xiang Li(李殷翔), Li-Jun Tian(田立君), Bin Chen(陈斌). Chin. Phys. B, 2018, 27(12): 127501.
[5] Parallel generation of 31 tripartite entangled states based on optical frequency combs
Jing Zhang(张静), Yan-Fang Wang(王艳芳), Xiao-Yu Liu(刘晓宇), Rong-Guo Yang(杨荣国). Chin. Phys. B, 2017, 26(12): 124205.
[6] Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver
Li Huang(黄理). Chin. Phys. B, 2016, 25(11): 117101.
[7] Thermal vacuum state corresponding to squeezed chaotic light and its application
Wan Zhi-Long (万志龙), Fan Hong-Yi (范洪义), Wang Zhen (王震). Chin. Phys. B, 2015, 24(12): 120301.
[8] Critical exponents of ferroelectric transitions in modulated SrTiO3:Consequences of quantum fluctuations and quenched disorder
Wang Jing-Xue (王景雪), Liu Mei-Feng (刘美风), Yan Zhi-Bo (颜志波), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2013, 22(7): 077701.
[9] Mean-field and high temperature series expansion calculations of some magnetic properties of Ising and XY antiferromagnetic thin-films
R. Masrour, M. Hamedoun, A. Benyoussef. Chin. Phys. B, 2012, 21(8): 087503.
[10] A set of new nucleon coupling constants and the proto neutron star matter
Zhao Xian-Feng (赵先锋), Jia Huan-Yu (贾焕玉). Chin. Phys. B, 2012, 21(8): 089701.
[11] Properties of ground state and anomalous quantum fluctuations in one-dimensional polaron–soliton systems—the effects of electron-two-phonon interaction and non-adiabatic quantum correlations
Luo Zhi-Hua(罗质华), Cao Xi-Jin(曹锡金), and Yu Chao-Fan(余超凡). Chin. Phys. B, 2011, 20(6): 067103.
[12] Photon counts modulation in optical time domain reflectometry
Wang Xiao-Bo(王晓波), Wang Jing-Jing(王晶晶), Zhang Guo-Feng(张国锋), Xiao Lian-Tuan(肖连团), and Jia Suo-Tang(贾锁堂). Chin. Phys. B, 2011, 20(6): 064204.
[13] Stability of trapped Bose–Einstein condensates in one-dimensional tilted optical lattice potential
Fang Jian-Shu(方见树) and Liao Xiang-Ping(廖湘萍) . Chin. Phys. B, 2011, 20(4): 040310.
[14] Stabilised bright solitons in Bose—Einstein condensates in an expulsive parabolic and complex potential
Zhang Tao(张涛), Yang Zhan-Ying(杨战营), Zhao Li-Chen(赵立臣), and Yue Rui-Hong(岳瑞宏). Chin. Phys. B, 2010, 19(7): 070502.
[15] Bright and dark soliton solutions in growing Bose—Einstein condensates
Song Wei-Wei(宋伟为), Li Qiu-Yan(李秋艳), Li Zai-Dong(李再东), and Fu Guang-Sheng(傅广生). Chin. Phys. B, 2010, 19(7): 070503.
No Suggested Reading articles found!