Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(12): 4562-4567    DOI: 10.1088/1674-1056/17/12/038
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Analysis of D$\alpha$H$\alpha$ spectrum emitted in front of the limiter in HT--7

Huang Juan (黄娟)a, Wan Bao-Nian (万宝年)a, Daren StotlerbXiao Bing-Jia(肖炳甲)a, Wu Zhen-Wei (吴振伟)a, the HT--7 teama
a Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, China; b Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA
Abstract  In order to understand the recycling and emission processes of hydrogen atoms in HT--7, spectral profiles of the D$\alpha$H$\alpha$ line emitted in front of the limiter have been observed with a high-resolution spectrometer and simulated by using the neutral particle transport code DEGAS 2. The results show that four processes are necessary to interpret the D$\alpha$H$\alpha$ line shape: 1) atom desorption, 2) molecular dissociation, 3) particle reflection, and 4) charge-exchange. The products of the first two processes are cold atoms which emit photons near the peak of D$\alpha$H$\alpha$ line shape, and those from the last two are warm atoms contributing to the blue side of the spectrum. For a typical ohmic discharge (shot 68520 ne (0)≈3x1019m-3, these components contribute 32%, 15%, 32% and 21%, respectively. D$\alpha$H$\alpha$ line shapes under different plasma parameters are also discussed in this paper.
Keywords:  tokamak      edge recycling      D$\alpha$H$\alpha$ line shape  
Received:  27 May 2008      Revised:  25 June 2008      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.25.Fi (Transport properties)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
  52.65.-y (Plasma simulation)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
  52.80.-s (Electric discharges)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10725523).

Cite this article: 

Huang Juan (黄娟), Wan Bao-Nian (万宝年), Daren Stotlerb, Xiao Bing-Jia(肖炳甲)a​, Wu Zhen-Wei (吴振伟), the HT-- team Analysis of D$\alpha$H$\alpha$ spectrum emitted in front of the limiter in HT--7 2008 Chin. Phys. B 17 4562

[1] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[2] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[3] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[4] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[5] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[6] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[7] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[8] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[9] Energetic-ion excited internal kink modes with weak magnetic shear in q0 >1 tokamak plasmas
Wen-Ming Chen(陈文明), Xiao-Gang Wang(王晓钢), Xian-Qu Wang(王先驱), Rui-Bin Zhang(张瑞斌). Chin. Phys. B, 2017, 26(8): 085201.
[10] Fast parallel Grad-Shafranov solver for real-time equilibrium reconstruction in EAST tokamak using graphic processing unit
Yao Huang(黄耀), Bing-Jia Xiao(肖炳甲), Zheng-Ping Luo(罗正平). Chin. Phys. B, 2017, 26(8): 085204.
[11] Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration
Xueke Wu(吴雪科), Huidong Li(李会东), Zhanhui Wang(王占辉), Hao Feng(冯灏), Yulin Zhou(周雨林). Chin. Phys. B, 2017, 26(6): 065201.
[12] A divertor plasma configuration design method for tokamaks
Yong Guo(郭勇), Bing-Jia Xiao(肖炳甲), Lei Liu(刘磊), Fei Yang(杨飞), Yuehang Wang(汪悦航), Qinglai Qiu (仇庆来). Chin. Phys. B, 2016, 25(11): 115201.
[13] Effects of q-profiles of a weak magnetic shear on energetic ion excited q=1 mode in tokamak plasmas
Ze-Yu Li(李泽宇), Xian-Qu Wang(王先驱), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2016, 25(1): 015203.
[14] Start-up phase plasma discharge design of a tokamak via control parameterization method
Guo Shan (郭珊), Xu Ke (许珂), Xu Chao (许超), Ren Zhi-Gang (任志刚), Xiao Bing-Jia (肖炳甲). Chin. Phys. B, 2015, 24(3): 035202.
[15] Simulations of the L–H transition dynamics with different heat and particle sources
Li Hui-Dong (李会东), Wang Zhan-Hui (王占辉), Jan Weiland, Feng Hao (冯灏), Sun Wei-Guo (孙卫国). Chin. Phys. B, 2015, 24(11): 115204.
No Suggested Reading articles found!