Please wait a minute...
Chinese Physics, 2006, Vol. 15(2): 422-427    DOI: 10.1088/1009-1963/15/2/031
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electron field emission from single-walled carbon nanotube nonwoven

Song Li (宋礼)ab, Liu Shuang (刘双)a, Zhang Geng-Min (张耿民)c, Liu Li-Feng (刘利峰)ab, Ma Wen-Jun (马文君)ab, Liu Dong-Fang (刘东方)ab, Zhao Xiao-Wei (赵小伟)ab, Luo Shu-Dong (罗述东)ab, Zhang Zeng-Xing (张增星)ab, Xiang Yan-Juan (向彦娟)ab, Shen Jun (沈俊)a, Zhou Jian-Jun (周建军)a, Wang Gang (王刚)a, Zhou Wei-Ya (周维亚)a
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,Chinese Academy of Sciences, Beijing 100080, China; b Graduate School of the Chinese Academy of Sciences, Beijing 100039, China; c Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
Abstract  Field emission from single-walled carbon nanotube (SWNT) nonwoven has been investigated under high vacuum with different vacuum gaps. A low turn-on electric field of 1.05\,V/$\mu $m is required to reach an emission current density of 10 $\mu $A/cm$^{2}$. An emission current density of 10 mA/cm$^{2}$ is obtained at an operating electric field of 1.88\,V/$\mu $m. No current saturation is found even at an emission current of 5\,mA. With the vacuum gap increasing from 1 to 10 mm, the turn-on field decreases monotonically from 1.21 to 0.68\,V/$\mu $m, while the field amplification is augmented. The good field-emission behaviour is ascribed to the combined effects of the intrinsic field emission of SWNT and the waved topography of the nonwoven.
Keywords:  single-walled carbon nanotubes      field  
Received:  09 September 2005      Revised:  14 September 2005      Accepted manuscript online: 
PACS:  79.70.+q (Field emission, ionization, evaporation, and desorption)  
  61.46.Fg (Nanotubes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10334060 and 50572119) and ``973'' National Basic Research Project (Grant No 2005CB623602).

Cite this article: 

Song Li (宋礼), Liu Shuang (刘双), Zhang Geng-Min (张耿民), Liu Li-Feng (刘利峰), Ma Wen-Jun (马文君), Liu Dong-Fang (刘东方), Zhao Xiao-Wei (赵小伟), Luo Shu-Dong (罗述东), Zhang Zeng-Xing (张增星), Xiang Yan-Juan (向彦娟), Shen Jun (沈俊), Zhou Jian-Jun (周建军), Wang Gang (王刚), Zhou Wei-Ya (周维亚) Electron field emission from single-walled carbon nanotube nonwoven 2006 Chinese Physics 15 422

[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[3] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[4] Measuring stellar populations, dust attenuation and ionized gas at kpc scales in 10010 nearby galaxies using the integral field spectroscopy from MaNGA
Niu Li(李牛) and Cheng Li(李成). Chin. Phys. B, 2023, 32(3): 039801.
[5] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[6] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[7] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[8] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[9] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[10] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[11] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[12] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[13] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[14] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[15] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
No Suggested Reading articles found!