Please wait a minute...
Chinese Physics, 2004, Vol. 13(2): 251-257    DOI: 10.1088/1009-1963/13/2/022
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Critical properties of XY model on two-layer Villain-ferromagnetic lattice

Wang Yi (王漪)ab, R. Quartub, Liu Xiao-Yan (刘晓彦)a, Han Ru-Qi (韩汝琦)a, Horiguchi Tsuyoshi (堀口刚)b 
a Institute of Microelectronics, Peking University, Beijing 100871, China; b Department of Computer and Mathematical Sciences, GSIS, Tohoku University 04, Sendai 980-8579, Japan
Abstract  We investigate phase transitions of the XY model on a two-layer square lattice which consists of a Villain plane (J) and a ferromagnetic plane (I), using Monte Carlo simulations and a histogram method. Depending on the values of interaction parameters (I,J), the system presents three phases: namely, a Kosterlitz-Thouless (KT) phase in which the two planes are critical for I predominant over J, a chiral phase in which the two planes have a chiral order for J predominant over I and a new phase in which only the Villain plane has a chiral order and the ferromagnetic plane is paramagnetic with a small value of chirality. We clarify the nature of phase transitions by using a finite size scaling method. We find three different kinds of transitions according to the values of (I,J): the KT transition, the Ising transition and an XY-Ising transition with $\nu=0.849(3)$. It turns out that the Ising or XY-Ising transition is associated with the disappearance of the chiral order in the Villain plane.
Keywords:  XY model      chirality      KT transition      two-layer Villain lattice  
Received:  16 May 2003      Revised:  14 July 2003      Accepted manuscript online: 
PACS:  75.10.Hk (Classical spin models)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
  05.70.Fh (Phase transitions: general studies)  
  05.50.+q (Lattice theory and statistics)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
Fund: Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and the National Natural Science Foundation of China (Grant No 10234010).

Cite this article: 

Wang Yi (王漪), R. Quartu, Liu Xiao-Yan (刘晓彦), Han Ru-Qi (韩汝琦), Horiguchi Tsuyoshi (堀口刚), Critical properties of XY model on two-layer Villain-ferromagnetic lattice 2004 Chinese Physics 13 251

[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[3] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[4] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[5] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[6] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[7] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[8] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
[9] Helicity of harmonic generation and attosecond polarization with bichromatic circularly polarized laser fields
Jun Zhang(张军), Tong Qi(齐桐), Xue-Fei Pan(潘雪飞), Jing Guo(郭静), Kai-Guang Zhu(朱凯光), Xue-Shen Liu(刘学深). Chin. Phys. B, 2019, 28(10): 103204.
[10] Electromagnetic chirality-induced negative refraction with the same amplitude and anti-phase of the two chirality coefficients
Zhao Shun-Cai (赵顺才), Liu Zheng-Dong (刘正东), Zheng Jun (郑军), Li Gen (黎根). Chin. Phys. B, 2011, 20(6): 067802.
[11] Coherent control of negative refraction based on local-field enhancement and dynamically induced chirality
Ba Nuo (巴诺), Gao Jin-Wei (高金伟), Tian Xing-Xia (田杏霞), Wu Xi (吴熙), Wu Jin-Hui (吴金辉). Chin. Phys. B, 2010, 19(7): 074208.
[12] Chirality-asymmetry force between $\alpha$-quartz and copper block
Hu Yong-Hong(胡永红), Xu Qing(徐庆), and Liu Zhong-Zhu(刘中柱). Chin. Phys. B, 2009, 18(4): 1367-1372.
[13] Surface second harmonic generation of chiral molecules using three-coupled-oscillator model
Wang Xiao-Ou(王晓鸥), Li Chun-Fei(李淳飞), and Li Jun-Qing(李俊庆). Chin. Phys. B, 2006, 15(11): 2623-2630.
[14] ADSORPTION BEHAVIOR OF AMINO ACIDS ON COPPER SURFACES
Zhao Xue-ying (赵学应), Wang Hao (王浩), Yan Hao (晏浩), Gai Zheng (盖铮), Zhao Ru-guang (赵汝光), Yang Wei-sheng (杨威生). Chin. Phys. B, 2001, 10(13): 84-95.
No Suggested Reading articles found!