Abstract In this paper we consider the movement of an electron in the single electron tunnel process through a mesoscopic capacitor. The results show that, due to the Coulomb force, there is a threshold voltage Vt in the mesoscopic LC circuit. When the external voltage is lower than the threshold voltage, the tunnel current value is zero, and the Coulomb blockade phenomenon arises. Furthermore, considering that the mesoscopic dimension is comparable to the coherence length in which charge carriers retain the phase remembrance, a weak coupling can be produced through the proximity effect of the normal metal electrons of both electrodes of a mesoscopic capacitor. By varying the external voltage, we can observe the Shapiro current step on the current-voltage characteristic curve of a mesoscopic LC circuit.
Received: 02 January 2002
Revised: 28 February 2002
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.