Please wait a minute...
Chinese Physics, 2001, Vol. 10(2): 121-123    DOI: 10.1088/1009-1963/10/2/307
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

STUDY OF THE FOUR-WAVE MIXING DIFFRACTION EFFICIENCY OF LONGITUDINAL-FIELD MULTIPLE-QUANTUM-WELL PHOTOREFRACTIVE DEVICE GROWN AT LOW TEMPERATURE

 Lu Yuan (陆沅)a, Li Chun-yong (李春勇)a, Zhang Yan-feng (张燕峰)a, Huang Qi (黄绮)a, Fu Pan-ming (傅盘铭)a, Zhang Zhi-guo (张治国)a, Lü Lan-bin (吕兰斌)b, Chen Hong-zhi (陈宏智)b, Qu Chang-zhi (曲昌智)b, Tang Jun-xiong (汤俊雄)b
a Institute of Physics,Chinese Academy of Sciences, Beijing 100080, China; b Department of Electronics, Peking University, Beijing 100871, China
Abstract  We investigate the relationship between the beam intensity and the four-wave mixing diffraction efficiency of longitudinal-field multiple-quantum-well(LMQW) photorefractive device grown at low temperature. The optimum beam intensity is found. We also explain the different mechanisms of the effect of beam intensity on the diffraction efficiency of the LMQW device and the transverse-field MQW device. Some advice on how to improve the diffraction efficiency is given.
Keywords:  multiple-quantum-well photorefractive device  
Received:  02 June 2000      Revised:  23 August 2000      Accepted manuscript online: 
PACS:  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 69896260).

Cite this article: 

Lu Yuan (陆沅), Li Chun-yong (李春勇), Zhang Yan-feng (张燕峰), Huang Qi (黄绮), Fu Pan-ming (傅盘铭), Zhang Zhi-guo (张治国), Lü Lan-bin (吕兰斌), Chen Hong-zhi (陈宏智), Qu Chang-zhi (曲昌智), Tang Jun-xiong (汤俊雄) STUDY OF THE FOUR-WAVE MIXING DIFFRACTION EFFICIENCY OF LONGITUDINAL-FIELD MULTIPLE-QUANTUM-WELL PHOTOREFRACTIVE DEVICE GROWN AT LOW TEMPERATURE 2001 Chinese Physics 10 121

[1] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[2] Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization
Siyuan Xu(许思源), Xiaoxian Zhu(朱孝先), Ji Wang(王佶), Yuanfeng Li(李远锋), Yitan Gao(高亦谈), Kun Zhao(赵昆), Jiangfeng Zhu(朱江峰), Dacheng Zhang(张大成), Yunlin Chen(陈云琳), and Zhiyi Wei(魏志义). Chin. Phys. B, 2021, 30(4): 048402.
[3] Diode-pumped Kerr-lens mode-locked Ti: sapphire laser with broad wavelength tunability
Han Liu(刘寒), Geyang Wang(王阁阳), Ke Yang(杨科), Renzhu Kang(康仁铸), Wenlong Tian(田文龙), Dacheng Zhang(张大成), Jiangfeng Zhu(朱江峰), Hainian Han(韩海年), Zhiyi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094213.
[4] Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect
Bakhtawar, Muhammad Haneef, B A Bacha, H Khan, M Atif. Chin. Phys. B, 2018, 27(11): 114215.
[5] Tunable second harmonic generation from a Kerr-lens mode-locked Yb: YCa4O(BO3)3 femtosecond laser
Zi-Ye Gao(高子叶), Jiang-Feng Zhu(朱江峰), Zheng-Mao Wu(吴正茂), Zhi-Yi Wei(魏志义), Hao-Hai Yu(于浩海), Huai-Jin Zhang(张怀金), Ji-Yang Wang(王继扬). Chin. Phys. B, 2017, 26(4): 044202.
[6] Kerr effect and Kerr constant enhancement in vertically aligned deformed helix ferroelectric liquid crystals
Liangyu Shi, Abhishek Kumar Srivastava, Vladimir G Chigrinov, Hoi-Sing Kwok. Chin. Phys. B, 2016, 25(9): 094212.
[7] Asymmetric dynamic phase holographic grating in nematic liquid crystal
Chang-Yu Ren(任常愚), Hong-Xin Shi(石宏新), Yan-Bao Ai(艾延宝), Xiang-Bao Yin(尹向宝), Feng Wang(王丰), Hong-Wei Ding(丁红伟). Chin. Phys. B, 2016, 25(9): 094218.
[8] Comparison of the compensation effects of fiber nonlinear impairments with mid-span optical phase conjugation between PDM CO-OFDM system and PDM QPSK system
Fei Xu(徐菲), Meng-Qi Guo(郭梦琪), Lei Wang(王蕾), Yao-Jun Qiao(乔耀军), Hui-Ping Tian(田慧平). Chin. Phys. B, 2016, 25(8): 084208.
[9] Study of magnetization reversal and anisotropy of single crystalline ultrathin Fe/MgO (001) film by magneto-optic Kerr effect
Miao-Ling Zhang(张苗玲), Jun Ye(叶军), Rui Liu(刘锐), Shu Mi(米菽), Yong Xie(谢勇), Hao-Liang Liu(刘郝亮), Chris Van Haesendonck, Zi-Yu Chen(陈子瑜). Chin. Phys. B, 2016, 25(4): 047503.
[10] Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser
Zi-Ye Gao(高子叶), Jiang-Feng Zhu(朱江峰), Ke Wang(汪珂), Jun-Li Wang(王军利), Zhao-Hua Wang(王兆华), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(2): 024205.
[11] Measurement of the argon-gas-induced broadening and line shifting of the barium Rydberg level 6s24d 1D2 by two-photon resonant nondegenerate four-wave mixing
Sun Jiang(孙江), Xiong Zhi-Qiang(熊志强), Sun Juan(孙娟), Wang Ying(王颖), and Su Hong-Xin(苏红新) . Chin. Phys. B, 2012, 21(6): 064215.
[12] Fano resonance and wave transmission through a chain structure with an isolated ring composed of defects
Zhang Cun-Xi(张存喜), Ding Xiu-Huan(丁秀欢), Wang Rui(王瑞) Zhou Yun-Qing(周运清), and Kong Ling-Min(孔令民) . Chin. Phys. B, 2012, 21(3): 034202.
[13] Choice of optimal crystal-orientation for terahertz transceiver with zincblende crystal
Tian Xiao-Guang(田晓光), Ling Fu-Ri(凌福日), He Jian(何健), Liu Jin-Song(刘劲松), and Yao Jian-Quan(姚建铨) . Chin. Phys. B, 2011, 20(12): 124201.
[14] Joint nonlinearity and chromatic dispersion pre-compensation for coherent optical orthogonal frequency-division multiplexing systems
Qiao Yao-Jun(乔耀军), Liu Xue-Jun (刘学君), and Ji Yue-Feng (纪越峰) . Chin. Phys. B, 2011, 20(11): 114212.
[15] Optical patterns in spatially coupled phase-conjugate systems
Yue Li-Juan(岳立娟) and Sang Jin-Yu(桑金玉). Chin. Phys. B, 2010, 19(11): 110508.
No Suggested Reading articles found!