Please wait a minute...
Chinese Physics, 2000, Vol. 9(5): 325-328    DOI: 10.1088/1009-1963/9/5/002
GENERAL Prev   Next  

EXACT SOLUTION FOR SUPER-JAYNES-CUMMINGS MODEL

Lu Huai-xin (逯怀新)a, Wang Xiao-qing (王晓芹)a, Zhang Yong-de (张永德)b
a Department of Physics, Changwei Teachers College, Weifang 261043, China;  b Department of Modern Physics, University of Science and Technology of China, Hefei 230027, China
Abstract  Based on the linear quantum transformation theory, we further propose a supersymmetric unitary transformation, whose operator can be constructed by the supersymmetric generators of Lie superalgebra. Therefore, by making use of the supersymmetric unitary transformation, we can obtain the eigenspectrum, the eigenstates and the super-partition function for the Super-Jaynes-Cummings model when the coupling constants are Grrassmann valued.
Received:  23 October 1999      Accepted manuscript online: 
PACS:  03.65.Fd (Algebraic methods)  
  11.30.Pb (Supersymmetry)  
  42.50.-p (Quantum optics)  

Cite this article: 

Lu Huai-xin (逯怀新), Wang Xiao-qing (王晓芹), Zhang Yong-de (张永德) EXACT SOLUTION FOR SUPER-JAYNES-CUMMINGS MODEL 2000 Chinese Physics 9 325

[1] Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁). Chin. Phys. B, 2023, 32(3): 038401.
[2] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[3] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[4] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
[5] Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces
Jing-Ying Wei(魏静莹), Qing Wang(王青), and Jian Jing(荆坚). Chin. Phys. B, 2021, 30(11): 110307.
[6] Introducing the general condition for an operator in curved space to be unitary
Jafari Matehkolaee Mehdi. Chin. Phys. B, 2021, 30(8): 080301.
[7] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[8] Lie transformation on shortcut to adiabaticity in parametric driving quantum systems
Jian-Jian Cheng(程剑剑), Yao Du(杜瑶), and Lin Zhang(张林). Chin. Phys. B, 2021, 30(6): 060302.
[9] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[10] Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
M Eshghi, R Sever, S M Ikhdair. Chin. Phys. B, 2018, 27(2): 020301.
[11] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians: Bethe ansatz method
M Baradaran, H Panahi. Chin. Phys. B, 2017, 26(6): 060301.
[12] Inverse problem of quadratic time-dependent Hamiltonians
Guo Guang-Jie (郭光杰), Meng Yan (孟艳), Chang Hong (常虹), Duan Hui-Zeng (段会增), Di Bing (邸冰). Chin. Phys. B, 2015, 24(8): 080301.
[13] Solutions of the D-dimensional Schrödinger equation with Killingbeck potential: Lie algebraic approach
H. Panahi, S. Zarrinkamar, M. Baradaran. Chin. Phys. B, 2015, 24(6): 060301.
[14] Cluster algebra structure on the finite dimensional representations of affine quantum group Uq(Â3)
Yang Yan-Min (杨彦敏), Ma Hai-Tao (马海涛), Lin Bing-Sheng (林冰生), Zheng Zhu-Jun (郑驻军). Chin. Phys. B, 2015, 24(1): 010201.
[15] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
No Suggested Reading articles found!