Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1998, Vol. 7(10): 784-788    DOI: 10.1088/1004-423X/7/10/010
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev  

POSITRON ANNIHILATION STUDY OF THERMOELASTIC MARTENSITE STABILIZATION IN A THERMALLY CYCLED CuZnAl ALLOY--A DISCUSSION OF ORIGIN OF THERMOELASTIC MARTENSITE STABILIZATION

Wang Jing-cheng (王景成)a, You Fu-qiang (尤富强)a, Shao Zi-chang (邵自昌)a, Qi Jin-lin (祁金林)b, Tang Xue-feng (汤学峰)b
a Research Center, Shanghai Iron & Steel Research Institute, Shanghai 200940, China; b Department of Physics, Tongji University, Shanghai 200092, China
Abstract  The thermally cycled samples of Cu-23at%Zn-10at%Al have been studied by means of positron annihilation. It is shown that vacancies and their movement seem to be the leading factors resulting in thermoelastic martensite stabilization based on the fact that stabilization was no longer present and the great decrease of positron parameters after the samples in martensite were thermally cycled.
Received:  24 November 1997      Revised:  13 April 1998      Accepted manuscript online: 
PACS:  78.70.Bj (Positron annihilation)  
  61.82.Bg (Metals and alloys)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
  81.30.Kf (Martensitic transformations)  
  62.20.D- (Elasticity)  
Fund: Project supported by the Shanghai State Key Laboratory of Metal-Functional Materials, China.

Cite this article: 

Wang Jing-cheng (王景成), You Fu-qiang (尤富强), Shao Zi-chang (邵自昌), Qi Jin-lin (祁金林), Tang Xue-feng (汤学峰) POSITRON ANNIHILATION STUDY OF THERMOELASTIC MARTENSITE STABILIZATION IN A THERMALLY CYCLED CuZnAl ALLOY--A DISCUSSION OF ORIGIN OF THERMOELASTIC MARTENSITE STABILIZATION 1998 Acta Physica Sinica (Overseas Edition) 7 784

[1] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[2] Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes
Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义). Chin. Phys. B, 2018, 27(2): 027805.
[3] Tunable monoenergy positron annihilation spectroscopy of polyethylene glycol thin films
Peng Kuang(况鹏), Xiao-Long Han(韩小龙), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Peng Zhang(张鹏), Bao-Yi Wang(王宝义). Chin. Phys. B, 2017, 26(5): 057802.
[4] Simulation of positron backscattering and implantation profiles using Geant4 code
Huang Shi-Juan (黄世娟), Pan Zi-Wen (潘子文), Liu Jian-Dang (刘建党), Han Rong-Dian (韩荣典), Ye Bang-Jiao (叶邦角). Chin. Phys. B, 2015, 24(10): 107803.
[5] Exploring positron characteristics utilizing two new positron-electron correlation schemes based on multiple electronic structure calculation methods
Zhang Wen-Shuai (张文帅), Gu Bing-Chuan (谷冰川), Han Xiao-Xi (韩小溪), Liu Jian-Dang (刘建党), Ye Bang-Jiao (叶邦角). Chin. Phys. B, 2015, 24(10): 107804.
[6] Effect of size on momentum distribution of electrons around vacancies in NiO nanoparticles
Anjan Das, Atis Chandra Mandal, P. M. G. Nambissan. Chin. Phys. B, 2015, 24(4): 046102.
[7] Effect of vacancy charge state on positron annihilation in silicon
Liu Jian-Dang (刘建党), Cheng Bin (成斌), Kong Wei (孔伟), Ye Bang-Jiao (叶邦角). Chin. Phys. B, 2013, 22(10): 106104.
[8] Investigation of the free volume and ionic conducting mechanism of poly(ethylene oxide)-LiClO4 polymeric electrolyte by positron annihilating lifetime spectroscopy
Gong Jing (龚静), Gong Zhen-Li (宫振丽), Yan Xiao-Li (闫晓丽), Gao Shu (高舒), Zhang Zhong-Liang (张忠良), Wang Bo (王波). Chin. Phys. B, 2012, 21(10): 107803.
[9] Identification of the pressure-induced phase transition of ZnSe with the positron annihilation method
Liu Jian-Dang(刘建党), Cheng Bin(成斌), Zhang Jie(张杰), Zhang Li-Juan(张丽娟),Weng Hui-Min(翁惠民), and Ye Bang-Jiao(叶邦角) . Chin. Phys. B, 2011, 20(10): 108105.
[10] Theoretical study on the positron annihilation in Rocksalt structured magnesium oxide
Liu Jian-Dang(刘建党), Zhang Jie(张杰), Zhang Li-Juan(张丽娟), Hao Ying-Ping(郝颖萍), Guo Wei-Feng(郭卫锋), Cheng Bin(成斌), and Ye Bang-Jiao(叶邦角). Chin. Phys. B, 2011, 20(5): 057802.
[11] Self-consistent field method and non-self-consistent field method for calculating the positron lifetime
Zhang Jie(张杰), Liu Jian-Dang(刘建党),Chen Xiang-Lei(陈祥磊), and Ye Bang-Jiao(叶邦角). Chin. Phys. B, 2010, 19(11): 117802.
[12] Relationship between positron bulk lifetime and lattice constants—research on NaCl-type crystals
Zhang Jie(张杰), Chen Xiang-Lei(陈祥磊), and Ye Bang-Jiao(叶邦角). Chin. Phys. B, 2010, 19(7): 077806.
[13] Positronium diffusion in porous methylsilsesquioxanethin films
Dong Xi-Jie(董锡杰), Hu Yi-Fan(胡一帆), and Wu Yu-Ying(吴玉莹). Chin. Phys. B, 2010, 19(1): 013601.
[14] Evolution of native point defects in ZnO bulk probed by positron annihilation spectroscopy
Peng Cheng-Xiao(彭成晓), Wang Ke-Fan(王科范), Zhang Yang(张杨), Guo Feng-Li(郭凤丽), Weng Hui-Min(翁惠民), and Ye Bang-Jiao(叶邦角). Chin. Phys. B, 2009, 18(5): 2072-2077.
[15] The effects of fast neutron irradiation on oxygen in Czochralski silicon
Chen Gui-Feng(陈贵锋), Yan Wen-Bo(阎文博), Chen Hong-Jian(陈洪建), Li Xing-Hua(李兴华), and Li Yang-Xian(李养贤). Chin. Phys. B, 2009, 18(1): 293-297.
No Suggested Reading articles found!