Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1997, Vol. 6(5): 334-340    DOI: 10.1088/1004-423X/6/5/002
GENERAL Prev   Next  

TRANSITION FOR FINITE GLOBALLY COUPLED OSCILLATORS DRIVEN BY ADDITIVE AND MULTIPLICATIVE NOISES

LI JING-HUI (李静辉), HUANG ZU-QIA (黄祖洽)
Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875,China
Abstract  We study an ensemble of N globally coupled oscillators driven simultaneously by additive and multiplicative noises. By numerical simulation we find that for this model there is the same transition in the dynamics of the mean field when the coupling constant is increased as the one proposed by Pikovsky et al. (Z.Phys. B95(1994), 541). The effect of the multiplicative noises on the transition is that when the multiplicative noise strength D1 is small, the effect of the multiplicative noises on the transition is feeble; but with the increase of D1 the transition is strongly influenced near a special value D1 of D1; then with the increase of D1 when the value of D1 is larger than a critical value D10, the transition disappears. By some approximation we obtain the critical value D(1)0 of D1.
Received:  27 May 1996      Accepted manuscript online: 
PACS:  05.40.Ca (Noise)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  02.50.Cw (Probability theory)  
Fund: Project supported by the Education Commission of the State Council through the Foundation of Doctoral Training.

Cite this article: 

LI JING-HUI (李静辉), HUANG ZU-QIA (黄祖洽) TRANSITION FOR FINITE GLOBALLY COUPLED OSCILLATORS DRIVEN BY ADDITIVE AND MULTIPLICATIVE NOISES 1997 Acta Physica Sinica (Overseas Edition) 6 334

[1] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[2] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[3] A new simplified ordered upwind method for calculating quasi-potential
Qing Yu(虞晴) and Xianbin Liu(刘先斌). Chin. Phys. B, 2022, 31(1): 010502.
[4] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[5] Chaotic signal denoising algorithm based on sparse decomposition
Jin-Wang Huang(黄锦旺), Shan-Xiang Lv(吕善翔), Zu-Sheng Zhang(张足生), Hua-Qiang Yuan(袁华强). Chin. Phys. B, 2020, 29(6): 060505.
[6] Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Juju Hu(胡菊菊), Qin Xue(薛琴). Chin. Phys. B, 2019, 28(7): 070303.
[7] Stationary response of stochastic viscoelastic system with the right unilateral nonzero offset barrier impacts
Deli Wang(王德莉), Wei Xu(徐伟), Xudong Gu(谷旭东). Chin. Phys. B, 2019, 28(1): 010203.
[8] Effect of stochastic electromagnetic disturbances on autapse neuronal systems
Liang-Hui Qu(曲良辉), Lin Du(都琳), Zi-Chen Deng(邓子辰), Zi-Lu Cao(曹子露), Hai-Wei Hu(胡海威). Chin. Phys. B, 2018, 27(11): 118707.
[9] Controlling of entropic uncertainty in open quantum system via proper placement of quantum register
Ying-Hua Ji(嵇英华), Qiang Ke(柯强), Ju-Ju Hu(胡菊菊). Chin. Phys. B, 2018, 27(10): 100302.
[10] Signal-to-noise ratio comparison of angular signal radiography and phase stepping method
Wali Faiz, Peiping Zhu(朱佩平), Renfang Hu(胡仁芳), Kun Gao(高昆), Zhao Wu(吴朝), Yuan Bao(鲍园), Yangchao Tian(田扬超). Chin. Phys. B, 2017, 26(12): 120601.
[11] Stochastic bifurcations of generalized Duffing-van der Pol system with fractional derivative under colored noise
Wei Li(李伟), Mei-Ting Zhang(张美婷), Jun-Feng Zhao(赵俊锋). Chin. Phys. B, 2017, 26(9): 090501.
[12] Using wavelet multi-resolution nature to accelerate the identification of fractional order system
Yuan-Lu Li(李远禄), Xiao Meng(孟霄), Ya-Qing Ding(丁亚庆). Chin. Phys. B, 2017, 26(5): 050201.
[13] Pattern dynamics of network-organized system with cross-diffusion
Qianqian Zheng(郑前前), Zhijie Wang(王直杰), Jianwei Shen(申建伟). Chin. Phys. B, 2017, 26(2): 020501.
[14] Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution
Yu Zhang(张钰), Xinmiao Lu(逯鑫淼), Guangyi Wang(王光义), Yongcai Hu(胡永才), Jiangtao Xu(徐江涛). Chin. Phys. B, 2016, 25(7): 070503.
[15] Multifractal modeling of the production of concentrated sugar syrup crystal
Sheng Bi(闭胜), Jianbo Gao(高剑波). Chin. Phys. B, 2016, 25(7): 070502.
No Suggested Reading articles found!