Abstract The response time of photoemissive materials is required for detecting ultrashort duration laser pulses. In this paper, the response time of photoemission in ultrafine particle thin film is studied, and the transit time spread (TTS) and response time of peak value (tM) are discussed. The photoelectron's response time will increase with increasing energy of photons. If the surface potential barrier of thin film declines, the photoemissive sensitivity or quantum yield will rise, however the response time will also increase, which means that response-time characteristic gets worse. As an example, the response time for Ag-O-Cs thin film is calculated for different cases when photoelectrons, excited in Ag ultrafine particles, travel through Cs2O semiconductor layer to the surface and escape into vacuum. The calculated response time is about 50 fs if this thin film is irradiated by infrared rays of wavelength 1.06μm.
Received: 19 July 1993
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.