Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 104503    DOI: 10.1088/1674-1056/ae030a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Innovative dielectric elastomer actuator driver based on salamander muscle structures

Chenghong Zhang(张成红)11,2,†
1 Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang 550025, China;
2 School of Electronics & Information Engineering, Guiyang University, Guiyang 550005, China
Abstract  Salamander robots represent an innovative class of crawling robots that combine flexible limbs and spines to achieve exceptional motion stability and adaptability in unstructured environments. These biomimetic systems employ soft actuators that replicate the smooth, organic movements of living organisms, significantly enhancing fluid interaction efficiency and propulsion performance. This research specifically focuses on improving dielectric elastomer actuator (DEA)-based fish-like underwater robots by developing a novel drive mechanism inspired by the salamander musculature. While aquatic organisms such as fish possess complex muscle structures that challenge direct imitation, salamanders offer a more tractable model due to their simpler anatomical organization. Notably, the lateral inferior axonal muscles in salamanders exhibit a nearly flat configuration, with myomangial membranes arranged in a linear distribution from the lateral midline to the abdominal midline - a structural feature that is particularly amenable to DEA replication. Through systematic analysis of salamander morphology, this study develops a DEA driver model that investigates two critical performance parameters: (i) the impact of electrode geometry on the bending angle; and (ii) the relationship between driver quantity and angular displacement. The experimental results confirm that DEAs mimicking salamander muscle architecture can achieve substantially increased bending angles under optimized conditions, thereby demonstrating measurable improvements in robotic propulsion capabilities.
Keywords:  biomimetics      elastomer actuators (DEAs)      robotics      muscle structure imitation  
Received:  24 May 2025      Revised:  09 August 2025      Accepted manuscript online:  04 September 2025
PACS:  45.40.Ln (Robotics)  
  47.54.Jk (Materials science applications)  
  61.41.+e (Polymers, elastomers, and plastics)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: Project supported by the Joint Open Fund of Guizhou Provincial Department of Education (Grant No. [2022] 439) and the Doctoral Research Foundation of Guiyang University, China (Grant No. GYUKY-2025).
Corresponding Authors:  Chenghong Zhang     E-mail:  zhangchenghongcn@aliyun.com

Cite this article: 

Chenghong Zhang(张成红) Innovative dielectric elastomer actuator driver based on salamander muscle structures 2025 Chin. Phys. B 34 104503

[1] Zhou X and Bi S 2012 Bioinspir. Biomim. 7 041001
[2] Raj A and Thakur A 2016 Bioinspir. Biomim. 11 031001
[3] Hirose S and Yamada H 2009 IEEE Robot. Autom. Mag. 16 88
[4] Koh J S and Cho K J 2013 IEEEASME Trans. Mechatron. 18 419
[5] Ashley-Ross M A and Bechtel B F 2004 J. Exp. Biol. 207 461
[6] Gao K Q and Shubin N 2001 Nature 410 574
[7] Crespi A, Karakasiliotis K, Guignard A and Ijspeert A J 2013 IEEE Trans. Robot. 29 308
[8] Yamada H and Hirose S 2006 J. Robot. Mechatron. 18 305
[9] Katz B, Carlo J D and Kim S 2019 Proc. IEEE Int. Conf. Robot. Autom. 6295
[10] Fankhauser P, Bjelonic M, Dario Bellicoso C, Miki T and Hutter M 2018 Proc. IEEE Int. Conf. Robot. Autom. 5761-5768
[11] Crespi A, Badertscher A, Guignard A and Ijspeert A J 2005 Robot. Auton. Syst. 50 163
[12] Ijspeert A J, Crespi A and Cabelguen J M 2005 Neuroinformatics 3 171
[13] Crespi A and Ijspeert A J 2009 Artif. Life Models Hardw. 35-64
[14] Ijspeert A J, Crespi A, Ryczko D and Cabelguen J M 2007 Science 315 1416
[15] Karakasiliotis K and Ijspeert A J 2009 IEEE/RSJ Int. Conf. Intell. Robot. Syst. 5015-5020
[16] Karakasiliotis K, Thandiackal R, Melo K, Horvat T, Mahabadi N K, Tsitkov S, Cabelguen J M and Ijspeert A J 2016 J. R. Soc. Interface 13 20151089
[17] Yang L, Wang H, Zhang D S, Yang Y and Leng D 2024 Chem. Eng. J. 489 151402
[18] Zhang C 2025 Chin. Phys. B 34 048702
[1] Performance of tubular actuators constructed with dielectric elastomer materials
Chengguang Zhang(张成光). Chin. Phys. B, 2025, 34(7): 074501.
[2] Simple robot swarm with magnetic coupling connections can collaboratively accomplish collective tasks
Xingyu Ma(马星宇), Chuyun Wang(汪楚云), Jing Wang(王璟), Huaicheng Chen(陈怀城), Gao Wang(王高), and Liyu Liu(刘雳宇). Chin. Phys. B, 2025, 34(6): 068701.
[3] A bionic robotic fish with a dielectric elastomer
Chenghong Zhang(张成红)1,2,. Chin. Phys. B, 2025, 34(4): 048702.
[4] Controlling the dynamic behavior of decentralized cluster through centralized approaches
Daming Yuan(袁大明), Peilong Wang(王培龙), Peng Wang(王鹏), Xingyu Ma(马星宇), Chuyun Wang(汪楚云), Jing Wang(王璟), Huaicheng Chen(陈怀城), Gao Wang(王高), and Fangfu Ye(叶方富). Chin. Phys. B, 2024, 33(6): 060702.
[5] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[6] Energy-optimal problem of multiple nonholonomic wheeled mobile robots via distributed event-triggered optimization algorithm
Ying-Wen Zhang(张潆文), Jin-Huan Wang(王金环), Yong Xu(徐勇), De-Dong Yang(杨德东). Chin. Phys. B, 2019, 28(3): 030501.
[7] Nonlinear control of spacecraft formation flying with disturbance rejection and collision avoidance
Qing Ni(倪庆), Yi-Yong Huang(黄奕勇), Xiao-Qian Chen(陈小前). Chin. Phys. B, 2017, 26(1): 014502.
[8] Reactionless robust finite-time control for manipulation of passive objects by free-floating space robots
Guo Sheng-Peng (郭胜鹏), Li Dong-Xu (李东旭), Meng Yun-He (孟云鹤), Fan Cai-Zhi (范才智). Chin. Phys. B, 2014, 23(5): 054502.
[9] Fast filtering algorithm based on vibration systems and neural information exchange and its application to micro motion robot
Gao Wa (高娃), Zha Fu-Sheng (查富生), Song Bao-Yu (宋宝玉), Li Man-Tian (李满天). Chin. Phys. B, 2014, 23(1): 010701.
[10] Collision avoidance for a mobile robot based on radial basis function hybrid force control technique
Wen Shu-Huan(温淑焕). Chin. Phys. B, 2009, 18(10): 4222-4228.
No Suggested Reading articles found!