| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
Overlapping community detection on attributed graphs via neutrosophic C-means |
| Yuhan Jia(贾雨涵)†, Leyan Ouyang(欧阳乐严)†, Qiqi Wang(王萁淇)‡, and Huijia Li(李慧嘉)§ |
| School of Statistics and Data Science, AAIS, LPMC and KLMDASR, Nankai University, Tianjin 300071, China |
|
|
|
|
Abstract Detecting overlapping communities in attributed networks remains a significant challenge due to the complexity of jointly modeling topological structure and node attributes, the unknown number of communities, and the need to capture nodes with multiple memberships. To address these issues, we propose a novel framework named density peaks clustering with neutrosophic C-means. First, we construct a consensus embedding by aligning structure-based and attribute-based representations using spectral decomposition and canonical correlation analysis. Then, an improved density peaks algorithm automatically estimates the number of communities and selects initial cluster centers based on a newly designed cluster strength metric. Finally, a neutrosophic C-means algorithm refines the community assignments, modeling uncertainty and overlap explicitly. Experimental results on synthetic and real-world networks demonstrate that the proposed method achieves superior performance in terms of detection accuracy, stability, and its ability to identify overlapping structures.
|
Received: 03 April 2025
Revised: 23 June 2025
Accepted manuscript online: 02 July 2025
|
|
PACS:
|
89.75.Fb
|
(Structures and organization in complex systems)
|
| |
89.75.-k
|
(Complex systems)
|
|
| Fund: This work is supported by the Natural Science Foundation of China (Grant No. 72571150). |
Corresponding Authors:
Qiqi Wang, Huijia Li
E-mail: qiqi.wang@nankai.edu.cn;hjli@nankai.edu.cn
|
| About author: 2025-128901-250577.pdf |
Cite this article:
Yuhan Jia(贾雨涵), Leyan Ouyang(欧阳乐严), Qiqi Wang(王萁淇), and Huijia Li(李慧嘉) Overlapping community detection on attributed graphs via neutrosophic C-means 2025 Chin. Phys. B 34 128901
|
[1] Su X, Xue S, Liu F, Wu J, Yang J, Zhou C, Hu W, Paris C, Nepal S, Jin D, Sheng Q Z and Yu P S 2024 IEEE Trans. Neural Netw. Learn. Syst. 35 4682 [2] Ma J L, Li M and Li H J 2024 IEEE Trans. Netw. Sci. Eng. 11 14 [3] Cao J, Xu W, Jin D, Zhang X, Liu L and Miller A 2025 Inf. Sci. 686 121349 [4] Gmati H, Mouakher A, Gonzalez-Pardo A and Camacho D 2024 J. Ambient Intell. Humaniz. Comput. 15 1779 [5] Ji F, Wu J, Chiclana F, Wang S, Fujita H and Herrera-Viedma E 2023 IEEE Trans. Fuzzy Syst. 31 3025 [6] Costa L F, Oliveira Jr O N, Travieso G, Rodrigues F A, Villas Boas P R, Antiqueira L, Viana M P and Correa Rocha L E 2011 Adv. Phys. 60 329 [7] Li H J, Lou F H, Wang Q Q and Li G J 2025 Chaos Soliton Fract. 199 116654 [8] Bothorel C, Cruz J D, Magnani M and Micenkova B 2015 Netw. Sci. 3 408 [9] Lu H, Hong H and Geng X 2024 Neural Process. Lett. 56 130. [10] Berahmand K, Nasiri E and Li Y 2021 Comput. Biol. Med. 138 104933 [11] Grassi R, Bartesaghi P, Benati S and Clemente G P 2021 Netw. Spat. Econ. 21 707 [12] Zhang Y, Pan R, Wang H and Su H 2023 Stat 12 507 [13] Fortunato S 2010 Phys. Rep. 486 75 [14] Grover A and Leskovec J Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, August 13-17, 2016 San Francisco, United States, p. 855 [15] Berahmand K, Mohammadi M, Saberi-Movahed F, Li Y and Xu Y 2022 IEEE Trans. Netw. Sci. Eng. 10 372 [16] de Silva A, Chen G, Ma H, Nekooei S M, Zuo X 2025 arXiv:2505.10197 [cs.SI] [17] Zhang A, Wang X, Zhao Y 2024 arXiv:2411.01947 [cs.SI] [18] Zeng R, Liu Z, Guo K 2024 Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2023) 137. [19] Guo Y and Sengur A 2015 Pattern Recognit. 48 2710 [20] Rodriguez A and Laio A 2014 Sci. 344 1492 [21] Costa A R 2021 arXiv:2111.15623 [cs.SI] [22] Xie Y, Wang X, Jiang D, Xu R 2019 Inf. Sci. 501 1 [23] Al-Garadi M A, Varathan K, Dey S and Sarker S S 2022 J. Eng. 2022 1 [24] Liu R, Wang H and Yu X 2018 Inf. Sci. 450 200 [25] Du M, Ding S and Xue Y 2018 Int. J. Mach. Learn. Cybern. 9 1131 [26] Li J, Dani H, Hu X, Tang J, Chang Y and Liu H 2017 Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, November 6-10, 2017 Singapore, Singapore, p. 387 [27] Pearson K 1905 Nature 72 342 [28] Zhou Y, Cheng H, Yu J X 2009 Proc. VLDB Endow. 2 718 [29] Gao H and Huang H 2018 Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI), July 13-19, 2018 Stockholm, Sweden, p. 3364 [30] Tang J, Qu M, Wang M, Zhang M, Yan J and Mei 2015 Proceedings of the 24th international conference on world wide web, May 18-22, 2015 Florence, Italy, p. 1067 [31] Li H J, Lou F H,Wang Q Q, Li G J and PercM2025 IEEE Trans. Netw. Sci. Eng. 14 1 [32] Chen J, Ma T and Xiao C Fastgcn 2018 arXiv: 1801.10247 [cs.SI] [33] Belkin M and Niyogi P 2003 Neural. Comput. 15 1373 [34] Gregory S 2010 New J. Phys. 12 103018 [35] Coscia M, Rossetti G, Giannotti F and Pedreschi D 2012 Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, August 12-16, 2012 Beijing, China, p. 615 [36] Palla G, Derényi I, Farkas I and Vicsek, T 2005 Nature 435 814 [37] Li H J, Song S P, Tan W Z, Huang Z C, Li X Y, Xu W Z and Cao J 2022 Neurocomputing 512 482 [38] Li H J, Zhang J, Liu Z P, Chen L and Zhang X S 2012 Eur. Phys. J. B 85 1 [39] Smarandache F 2001 arXiv: math/0101228 [math.GM] [40] Bezdek J C, Ehrlich R and Full W 1984 Comput. Geosci. 10 191 [41] Ma P J, Ren X Z, Zhu J F and Jiang Y J 2024 Chin. Phys. B 33 088903 [42] Ai D, Liu X L, Kang W Z, Li L N, Lu S Q and Liu Y 2023 Chin. Phys. B 32 118902 [43] Su Z, Chen L, Ai J, Zheng Y Y and Bie N 2024 Chin. Phys. B 33 058901 [44] Wang J, Zhang Y and Lan X 2016 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Oct 14-17, 2016 Chengdu, China, p. 13 [45] Parlett B N 2002 Comput. Sci. Eng. 2 38 [46] Stewart G W 2002 SIAM J. Matrix Anal. Appl. 23 601 [47] Lancichinetti A, Fortunato S and Radicchi F 2008 Phys. Rev. E:Stat., Nonlinear, Soft Matter Phys. 78 046110 [48] Girvan M and Newman M E 2002 Proc. Natl. Acad. Sci. USA 99 7821 [49] Krebs V http://www.orgnet.com/ [2025-3-31] [50] Craven M, DiPasquo D, Freitag D, McCallum A, Mitchell T, Nigam K and Slattery S 1998 web. AAAI/IAAI 3 2 [51] Lancichinetti A, Fortunato S and Kertész J 2009 New J. Phys. 11 033015 [52] Strehl A and Ghosh J 2003 J. Mach. Learn. Res. 3 3 [53] Collins L M and Dent C W 1988 Multivar. Behav. Res. 23 231 [54] Rand W M 1971 J. Am. Stat. Assoc. 66 846 [55] Hubert L and Arabie P 1985 J. Classif. 2 193 [56] Shen H, Cheng X, Cai K and Hu M B 2009 Phys. A 388 1706 [57] Newman M E and Girvan M 2004 Phys. Rev. E 69 026113 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|