Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 124702    DOI: 10.1088/1674-1056/ade063
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of droplet group based on an external electromagnetic valve in a microfluidic chip

Dong Wang(王东), Xiaonan Li(李啸楠), Jiayi Zhou(周佳怡), Liyu Liu(刘雳宇), and Guo Chen(陈果)‡
Chongqing Key Laboratory of Interface Physics in Energy Conversion, School of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
Abstract  Previous studies on droplet generation in microfluidics mainly focus on the monodisperse droplet, but limited attention has paid to the generation of droplet groups composed of multiple droplets with different volumes or components. In this study, a programmable electromagnetic valve is externally connected with the microfluidic chip featuring a conventional flow-focused structure. Different from the previous situation where only one droplet is generated by a single actuation of the electromagnetic valve, by precisely controlling the opening and closing of the valve, the continuous phase fluid exhibits periodic flow in the channel, and we realized the generation of a droplet group by a single actuation of the valve, and the number and volume of the droplets in each group can be regulated. Specifically, the number of large droplets in a droplet group is mainly determined by the opening time of the electromagnetic valve and the two-phase flow rate, and the number of small droplets is dominated by the valve closing time. The volume of individual droplets in a droplet group is largely dependent on the flow rate of the continuous phase. Our study extends the understanding of microfluidic droplet formation. It provides a feasible method for the efficient preparation of polydisperse droplets, which is important for microfluidic chip-based droplet control and has potential applications in industries related to microfluidic droplets.
Keywords:  droplet group      electromagnetic valve      valve switching ratio      microfluidic chip  
Received:  21 February 2025      Revised:  22 May 2025      Accepted manuscript online:  04 June 2025
PACS:  47.55.db (Drop and bubble formation)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
  47.55.Ca (Gas/liquid flows)  
  47.55.D- (Drops and bubbles)  
Fund: Project supported by the Chongqing Human Resources and Social Security Bureau (Grant No. CX2023079), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2023CDJXY-049 and 2024CDJXY-022), and the National Natural Science Foundation of China (Grant Nos. T2350007 and 127404).
Corresponding Authors:  Liyu Liu, Guo Chen     E-mail:  lyliu@cqu.edu.cn;wezer@cqu.edu.cn

Cite this article: 

Dong Wang(王东), Xiaonan Li(李啸楠), Jiayi Zhou(周佳怡), Liyu Liu(刘雳宇), and Guo Chen(陈果) Generation of droplet group based on an external electromagnetic valve in a microfluidic chip 2025 Chin. Phys. B 34 124702

[1] Chiu D T and Lorenz R M 2009 Accounts Chem. Res. 42 649
[2] Grossier R, Hammadi Z, Morin R and Magnaldo A 2011 Appl. Phys. Lett. 98 3
[3] Chen L, Yang C, Xiao Y, Yan X, Hu L, Eggersdorfer M, Chen D, Weitz D A and Ye F 2021 Mater. Today Nano 16 100136
[4] Chan H F, Zhang Y and Leong K W 2016 Small 12 2720
[5] Mazutis L, Baret J C and Griffiths A D 2009 Lab Chip 9 2665
[6] Mashaghi S, Abbaspourrad A, Weitz D A and van Oijen A M 2016 Trac-Trends Anal. Chem. 82 118
[7] Gielen F, Hours R, Emond S, Fischlechner M, Schell U and Hollfelder F 2016 Proc. Natl. Acad. Sci. USA 113 E7383
[8] Seong G H, Heo J and Crooks R M 2003 Anal. Chem. 75 3161
[9] Miller O J, El Harrak A, Mangeat T, Baret J C, Frenz L, El Debs B, Mayot E, Samuels M L, Rooney E K, Dieu P, et al. 2012 Proc. Natl. Acad. Sci. USA 109 378
[10] Vladisavljevic G T, Khalid N Neves M A, Kuroiwa T, Nakajima M, Uemura K, Ichikawa S and Kobayashi I 2013 Adv. Drug Deliv. Rev. 65 1626
[11] Yang Z, Chen J, Xiao Y, Yang C, Zhao C X, Chen D and Weitz D A 2024 Chem. & Bioengineering 1 2
[12] Colmenares J C, Varma R S and Nair V 2017 Chem. Soc. Rev. 46 6675
[13] Zhang D T, Wu F X, Peng M H, Wang X Y, Xia D G and Guo G S 2015 J. Am. Chem. Soc. 137 6263
[14] Guo M T, Rotem A, Heyman J A and Weitz D A 2012 Lab Chip 12 2146
[15] Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel J B and Demello A J 2008 Lab Chip 8 1244
[16] Nan L, Zhang H D, Weitz D A and Shum H C 2024 Lab Chip 24 20
[17] Shang L R, Cheng Y and Zhao Y J 2017 Chem. Rev. 117 7964
[18] deMello A J 2006 Nature 442 394
[19] Zeng S J, Li B W, Su X O, Qin J H and Lin B C 2009 Lab Chip 9 1340
[20] Guzowski J, Korczyk P M, Jakiela S and Garstecki P 2011 Lab Chip 11 3593
[21] Churski K, Nowacki M, Korczyk P M and Garstecki P 2013 Lab Chip 13 3689
[22] Zhang Y Y, Xia H M, Wu J W, Zhang J and Wang Z P 2019 Appl. Phys. Lett. 114 073701
[23] Yao J R, Li G Q, Yao X Y, Zhou L J, Ye Z K, Liu Y P, Zheng D T, Tang T, Song K N, Chen G and Liu L L 2024 Chin. Phys. B 33 058706
[24] Cybulski O, Jakiela S and Garstecki P 2016 Lab Chip 16 2198
[25] Ward T, Faivre M, Abkarian M and Stone H A 2005 Electrophoresis 26 3716
[26] Collins J and Lee A P 2007 Microfluidics and Nanofluidics 3 19
[27] Xu J H, Luo G S, Li S W and Chen G G 2006 Lab Chip 6 131
[1] Estimation of cancer cell migration in biomimetic random/oriented collagen fiber microenvironments
Jingru Yao(姚静如), Guoqiang Li(李国强), Xiyao Yao(姚喜耀), Lianjie Zhou(周连杰), Zhikai Ye(叶志凯), Yanping Liu(刘艳平), Dongtian Zheng(郑栋天), Ting Tang(唐婷), Kena Song(宋克纳), Guo Chen(陈果), and Liyu Liu(刘雳宇). Chin. Phys. B, 2024, 33(5): 058706.
[2] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[3] In vitro three-dimensional cancer metastasis modeling: Past, present, and future
Wei-jing Han(韩伟静), Wei Yuan(袁伟), Jiang-rui Zhu(朱江瑞), Qihui Fan(樊琪慧), Junle Qu(屈军乐), Li-yu Liu(刘雳宇), on behalf of the U.S.--China Physical Sciences-Oncology Alliance. Chin. Phys. B, 2016, 25(1): 018709.
No Suggested Reading articles found!