|
|
|
Atomic insights into topochemical fluorination and strong octahedral tilt in La2CoO4 |
| Yuzhou He(何玉洲)1,2,†, Ting Lin(林挺)3,†, Shiyu Wang(王诗雨)2, Ang Gao(高昂)2,4, Ziang Meng(孟子昂)5, Tianping Ying(应天平)2, Zhiqi Liu(刘知琪)5, Lin Gu(谷林)3, Qinghua Zhang(张庆华)2,‡, and Binghui Ge(葛炳辉)1,§ |
1 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 4 Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China; 5 School of Materials Science and Engineering, Beihang University, Beijing 100191, China |
|
|
|
|
Abstract Topochemical fluorination introduces significant structural distortions and emerging properties in perovskite oxides via substituting oxygen with fluorine. However, the rapid fluorination process and the similarity between F and O render the O/F site occupation and local lattice evolution during fluorination unclear. Here we investigated the atomic-scale O/F exchange in La$_{2}$CoO$_{4}$ and quantified the lattice distortion of three ordered structures: La$_{2}$CoO$_{3.5}$F, La$_{2}$CoO$_{3}$F$_{2}$, and La$_{2}$CoO$_{2.5}$F$_{3}$ by utilizing aberration-corrected electron microscopy. Atomic-resolved elemental mapping provides direct evidence for the O/F occupancy in interstitial and apical sites. We revealed that apical F ions induce significant octahedral tilting from 178$^\circ$ to 165$^\circ$, linearly proportional to the occupancy rate; and cause the obvious change in the fine structure O $K$ edge, meanwhile apical O is exchanged into interstitial sites. The strong octahedral tilt leads to the in-plane elongation of the [CoO$_{4}$F$_{2}$] octahedra. These findings elucidate the atomic-scale mechanisms of the entire fluorination process and highlight the significant role of F in tuning the octahedral tilt of functional oxides.
|
Received: 11 March 2025
Revised: 22 April 2025
Accepted manuscript online: 19 May 2025
|
|
PACS:
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
| |
68.37.Ma
|
(Scanning transmission electron microscopy (STEM))
|
| |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52322212, 52025025, 52250402, and 12474001) and the National Key R&D Program of China (Grant Nos. 2022YFA1403203 and 2023YFA1406300). |
Corresponding Authors:
Qinghua Zhang, Binghui Ge
E-mail: zqh@iphy.ac.cn;bhge@ahu.edu.cn
|
Cite this article:
Yuzhou He(何玉洲), Ting Lin(林挺), Shiyu Wang(王诗雨), Ang Gao(高昂), Ziang Meng(孟子昂), Tianping Ying(应天平), Zhiqi Liu(刘知琪), Lin Gu(谷林), Qinghua Zhang(张庆华), and Binghui Ge(葛炳辉) Atomic insights into topochemical fluorination and strong octahedral tilt in La2CoO4 2025 Chin. Phys. B 34 076102
|
[1] Wang T, Gong F, Ma X, Pan S, Wei X K, Kuo C, Yoshida S, Ku Y C, Wang S, Yang Z, Hazra S, Zhang K H L, Liu X, Tang Y, Zhu Y L, Chang C F, Das S, Ma X, Chen L, Xu B, Gopalan V, Bellaiche L, Martin L W and Chen Z 2025 Sci. Adv. 11 eads8830 [2] Sun X, Qin C, Zhao B, Jia S, Wang Z, Yang T, Liu X, Pan L, Zheng L, Luo D and Zhang Y 2024 Energy Storage Materials 70 103559 [3] Hirai D 2024 Inorganic Chemistry 63 4001 [4] Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo J N, Hara M, Kobayashi H and Domen K 2002 J. Phys. Chem. A 106 6750 [5] Kobayashi G, Hinuma Y, Matsuoka S,Watanabe A, Iqbal M, Hirayama M, Yonemura M, Kamiyama T, Tanaka I and Kanno R 2016 Science 351 1314 [6] Knee C S and Weller M T 2004 Phys. Rev. B 70 144406 [7] Zhang R, Gibbs A S, Zhang W, Halasyamani P S and Hayward M A 2017 Inorganic Chemistry 56 9988 [8] Zhang R, Senn M S and Hayward M A 2016 Chemistry of Materials 28 8399 [9] Hartman S T, Cho S B and Mishra R 2018 Inorganic Chemistry 57 10616 [10] Almamouri M, Edwards P P, Greaves C and Slaski M 1994 Nature 369 382 [11] James A, Zahurak S M and Murphy D W 1989 Nature 338 240 [12] WhangboMH, Kremer R K and Koo H J 2022 The Journal of Physical Chemistry C 126 16563 [13] Galasso F and Darby W 1963 J. Phys. Chem. 67 1451 [14] Galasso F and Darby W 1962 J. Phys. Chem. 66 1318 [15] Gonano B, Fjellvag O S, Steciuk G, Marshall K, Fjellvag H and Valldor M 2025 Scripta Materialia 255 116379 [16] Jacobs J, Marques M A L,Wang H C, Dieterich E and Ebbinghaus S G 2021 Inorganic Chemistry 60 13646 [17] Tsujimoto Y, Li J J, Yamaura K, Matsushita Y, Katsuya Y, Tanaka M, Shirako Y, Akaogi M and Takayama-Muromachi E 2011 Chem. Commun. 47 3263 [18] Slater P R and Gover R K B 2002 J. Mater. Chem. 12 291 [19] Sivakumar T and Wiley J B 2009 Materials Research Bulletin 44 74 [20] Wissel K, Heldt J, Groszewicz P B, Dasgupta S, Breitzke H, Donzelli M, Waidha A I, Fortes A D, Rohrer J, Slater P R, Buntkowsky G and Clemens O 2018 Inorganic Chemistry 57 6549 [21] Slater P R and Gover R K B 2001 Journal of Materials Chemistry 11 2035 [22] Almamouri M, Edwards P P, Greaves C, Slater P R and Slaski M 1995 Journal of Materials Chemistry 5 913 [23] Clemens O and Slater P R 2013 Reviews in Inorganic Chemistry 33 105 [24] Wang Y, Salzberger U, Sigle W, Suyolcu Y E and van Aken P A 2016 Ultramicroscopy 168 46 [25] Barthel J 2018 Ultramicroscopy 193 1 [26] Tsujimoto Y, Yamaura K and Takayama-Muromachi E 2012 Applied Sciences-Basel 2 206 [27] Li R K and Greaves C 2000 Phys. Rev. B 62 3811 [28] Nowroozi M A, Ivlev S, Rohrer J and Clemens O 2018 Journal of Materials Chemistry A 6 4658 [29] Meng Z, Yan H, Qin P, Yin Z, Jiang P, Zhou X, Wang X, Chen H, Liu L, Duan Z, Zhao G, Zhao W, Hu F, Zhang Q, Zhong Z and Liu Z 2024 Nano Research 17 7250 [30] Lin T, Gao A, Tang Z, Lin W, Sun M, Zhang Q, Wang X, Guo E J and Gu L 2024 Chin. Phys. Lett. 41 047701 [31] Li H, Daukiya L, Haldar S, Lindblad A, Sanyal B, Eriksson O, Aubel D, Hajjar-Garreau S, Simon L and Leifer K 2016 Scientific Reports 6 19719 [32] Aikens L D, Li R K and Greaves C 2000 Chem. Commun. 2129 [33] Susarla S, Garcia-Fernandez P, Ophus C, Das S, Aguado-Puente P, Mc- Carter M, Ercius P, Martin L W, Ramesh R and Junquera J 2021 Nat. Commun. 12 6273 [34] ZachmanMJ, Serov A, Lyu X, McKinney S, Yu H, OxleyMP, Spillane L, Holby E F and Cullen D A 2023 Electrochimica Acta 469 143205 [35] Hong Y, Byeon P, Bak J, Heo Y, Kim H S, Bae H B and Chung S Y 2021 Nat. Commun. 12 5527 [36] Hadermann J, Abakumov A, Tsirlin A A, Rozova M G, Sarakinou E and Antipov E V 2012 Inorganic Chemistry 51 11487 [37] Aleksandrov K S and Bartolomé J 2001 Phase Transitions 74 255 [38] Pitcher M J, Mandal P, Dyer M S, Alaria J, Borisov P, Niu H, Claridge J B and Rosseinsky M J 2015 Science 347 420 [39] Zhou D, Mueller-Caspary K, Sigle W, Krause F F, Rosenauer A and van Aken P 2016 Ultramicroscopy 160 110 [40] Khomskii D I and Streltsov S V 2021 Chemical Reviews 121 2992 [41] Liang G, Cao H, Cheng L, Zha J, Bao M, Ye F, Zhou H, Zhao A and Zhai X 2024 Chin. Phys. B 33 097101 [42] Fan Y Y, Wang J, Hu F X, Li B H, Geng A C, Yin Z, Zhang C, Zhou H B, Wang M Q, Yu Z B and Shen B G 2023 Chin. Phys. B 32 087504 [43] Frati F, Hunault M O J Y and de Groot F M F 2020 Chem. Rev. 120 4056 [44] Li D, Wang H, Li K, Zhu B, Jiang K, Backes D, Veiga L S I, Shi J, Roy P, Xiao M, Chen A, Jia Q, Lee T L, Dhesi S S, Scanlon D O, MacManus-Driscoll J L, van Aken P A, Zhang K H L and Li W 2023 Nat. Commun. 14 3638 [45] Mehta V V, Biskup N, Jenkins C, Arenholz E, Varela M and Suzuki Y 2015 Phys. Rev. B 91 144418 [46] Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y and Chen Z 2024 Nature 630 847 [47] Li D, Wang H, Li K, Zhu B, Jiang K, Backes D, Veiga L S I, Shi J, Roy P, Xiao M, Chen A, Jia Q, Lee T L, Dhesi S S, Scanlon D O, MacManus-Driscoll J L, van Aken P A, Zhang K H L and Li W 2023 Nat. Commun. 14 3638 [48] Kim W J, Smeaton M A, Jia C, Goodge B H, Cho B G, Lee K, Osada M, Jost D, Ievlev A V, Moritz B, Kourkoutis L F, Devereaux T P and Hwang H Y 2023 Nature 615 237 [49] Babkevich P, Prabhakaran D, Frost C D and Boothroyd A T 2010 Phys. Rev. B 82 184425 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|