Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 094204    DOI: 10.1088/1674-1056/add903
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Abnormal focal length increase of terajet generated in reflection mode

Yu-Jing Yang(杨育静)1, Jiang-Tao Qin(秦江涛)1, De-Long Zhang(张德龙)1,†, Sai-Dong Xue(薛赛东)2,‡, and Ning Yuan(袁宁)3,§
1 Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-Electronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), and Key Laboratory of Micro-Opto-Electro-Mechanical Systems (MOEMS) Technology (Ministry of Education), Tianjin University, Tianjin 300072, China;
2 College of Electrical and Electronic Engineering, Anhui Science and Technology University, Bengbu 233030, China;
3 Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
Abstract  We report an interesting and abnormal electromagnetic phenomenon with regard to a terajet (TJ) that is generated in a reflection mode, which is realized by placing a dielectric scatterer onto a metal reflection plate. We show that the introduction of an air hollow into metal reflection plate beneath the scatterer does not induce an expected decrease but an abnormal increase of focal length of the TJ by as much as more than three times. This abnormal phenomenon takes place in case that the air hollow is shallow and there exists a critical hollow depth for a given lateral size of air hollow. Larger than the critical depth, the phenomenon no longer occurs. It is explained from viewpoints of both ray optics in terms of role of relative portion of central waves in TJ formation and electromagnetic field theory with regard to hollow-induced phase singularities.
Keywords:  terajet      reflection mode      air hollow      focal length      phase singularity  
Received:  03 March 2025      Revised:  02 May 2025      Accepted manuscript online:  15 May 2025
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Fx (Diffraction and scattering)  
  42.50.St (Nonclassical interferometry, subwavelength lithography)  
  42.25.Hz (Interference)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61875148), the Key Awards Program of Cultivating Outstanding Innovative Postgraduates in Arts and Sciences of Tianjin University (Grant No. C1-2022- 002), the Talent Project of Anhui Science and Technology University (Grant No. DQYJ202304), the University-Level Research Project of Tianjin Sino–German University of Applied Sciences (Grant No. zdkt2018-007), China Association for Science and Technology Young Talent Support Project Doctoral Special Program, and the National High-level University Scholarship Program for Graduate Students of China Scholarship Council (Grant No. 202406250166).
Corresponding Authors:  De-Long Zhang, Sai-Dong Xue, Ning Yuan     E-mail:  dlzhang@tju.edu.cn;xuesaidong@hotmail.com;yuanning0321@163.com

Cite this article: 

Yu-Jing Yang(杨育静), Jiang-Tao Qin(秦江涛), De-Long Zhang(张德龙), Sai-Dong Xue(薛赛东), and Ning Yuan(袁宁) Abnormal focal length increase of terajet generated in reflection mode 2025 Chin. Phys. B 34 094204

[1] Liu Y Y, Liu X C, Li L, Chen W D, Chen Y, Huang Y R and Xie Z W 2017 Chin. Phy. B 26 114201
[2] Gu G Q, Zhang P, Chen S, Zhang Y and Yang H 2021 Photon. Res. 9 1157
[3] Yang Y J, Hua P R and Zhang D L 2022 Chin. Phys. B 31 034201
[4] Li Y C, Liu X S, Xu X H, Xin H B, Zhang Y and Li B J 2019 Adv. Funct. Mater. 29 1905568
[5] Yang H, Cornaglia M and Gijs M A 2015 Nano Lett. 15 1730
[6] Gu G Q, Song J, Chen M, Peng X, Liang H D and Qu J L 2018 Nanoscale 10 14182
[7] Yang Y J, Zhang D L and Hua P R 2022 Results Phys. 38 105616
[8] Minin I V, Minin O V, Pacheco-Pena V and Beruete M 2015 Opt. Lett. 40 2329
[9] Minin I V, Geints Y E, Zemlyanov A A and Minin I V 2020 Opt. Express 28 22690
[10] Minin I V, Minin O V, Pacheco-Peña V and Beruete M 2016 Quantum Electron 46 555
[11] Yue L Y, Yan B, Monks J N, Dhama R, Wang Z B, Minin O V and Minin I V 2018 Ann. Phys-Berlin 530 1800032
[12] Minin I V, Liu C Y, Yang Y C, Staliunas K and Minin O V 2020 Sci. Rep. 10 8459
[13] Yang Y J and Zhang D L 2024 J. Opt. Soc. Am. B 41 1018
[14] Yang Y J, Yang B R, Zhang D L and Yuan N 2025 Opt. Laser Technol. 180 111467
[15] Yang Y J, Zhang D L, Xue S D and Yuan N 2024 Opt. Express 32 26374
[16] Yang Y J, Yang B R, YuanMQ, Zhang D L, Yuan N and Xue S D 2025 Measurement 239 115530
[17] Wang M, Yan Y, Mi Y and Jiang Y 2022 J. Raman. Spectrosc. 53 1238
[18] Wang J, Yang S, Cao Y and Ye Y H 2022 J. Phys. Chem. C 126 7542
[19] Sergeev A and Sergeeva K 2020 Opt. Mater. 110 110503
[20] Dholakia K and Cižmár T 2011 Nat. Photon. 5 335
[21] Winnewisser C and Lewen F and Helm H 1998 Appl. Phys. A 66 593
[22] Geints Y E, Minin I V and Minin O V 2022 Opt. Lett. 47 1786
[23] Geints Y E, Minin I V and Minin O V 2022 Opt. Commun. 524 128779
[1] Design and fabrication of compound varifocal lens driven by polydimethylsiloxane film elastic deformation
Wen-Hao Miao(缪文浩), Ze-Feng Han(韩泽峰), Rui Zhao(赵瑞), Zhong-Cheng Liang(梁忠诚), Song-Feng Kou(寇松峰), and Rong-Qing Xu(徐荣青). Chin. Phys. B, 2024, 33(2): 024103.
[2] Microwave absorption and bandwidth study of Y2Co17 rare earth soft magnetic alloy with easy-plane anisotropy
Yun-Guo Ma(马云国), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Hao Wang(王浩), Zhe Sun(孙哲), Cheng-Fa Tu(涂成发), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2023, 32(8): 084202.
[3] Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates
Xuyue Guo(郭旭岳), Jinzhan Zhong(钟进展), Peng Li(李鹏), Bingyan Wei(魏冰妍), Sheng Liu(刘圣), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(4): 040305.
[4] Propagation dynamics and experimental observation of quadratic vortex beam
Chen Zi-Yang(陈子阳) and Pu Ji-Xiong(蒲继雄) . Chin. Phys. B, 2012, 21(2): 024201.
[5] Theoretical analysis and experimental research on thermal focal length of a YVO4/Nd:YVO4 composite crystal
Zhou Cheng(周城). Chin. Phys. B, 2009, 18(4): 1547-1552.
[6] High power red laser at 671nm by intracavity frequency doubling of a Nd:YVO4 laser
Yao Ai-Yun (姚爱云), Hou Wei (侯玮), Li Hui-Qing (李惠清), Bi Yong (毕勇), Li Rui-Ning (李瑞宁), Geng Ai-Cong (耿爱丛), Kong Yu-Peng (孔宇鹏), Cui Da-Fu (崔大复), Xu Zu-Yan (许祖彦). Chin. Phys. B, 2005, 14(7): 1433-1438.
No Suggested Reading articles found!