Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 020402    DOI: 10.1088/1674-1056/ad9a98
GENERAL Prev   Next  

Probing the shape of the primordial curvature power spectrum and the energy scale of reheating with pulsar timing arrays

Lele Fan(范乐乐)1,2, Jie Zheng(郑捷)2, Fengge Zhang(张丰阁)2, and Zhi-Qiang You(尤志强)2,†
1 School of Physics, Henan Normal University, Xinxiang 453007, China;
2 Henan Academy of Sciences, Zhengzhou 450046, China
Abstract  Recent observations by pulsar timing array collaborations have detected a stochastic common-spectrum signal, which may originate from scalar-induced gravitational waves generated by primordial curvature perturbations during inflation. Using the NANOGrav 15-year data set, we explore this hypothesis by constraining the primordial curvature power spectrum and reheating energy scale. We model the primordial power spectrum with a lognormal form and consider reheating with the equation of state parameter $w=1/6$. Our Bayesian analysis reveals a narrow peak in the primordial power spectrum (the width of the spectrum < 0.05 at the 95% confidence level) and constrains the reheating temperature to be 0.03 GeV $\lesssim T_{\rm rh} \lesssim$ 7.2 GeV. The best-fit SIGW spectrum shows a characteristic turning point near $f \sim 10^{-8.1}$ Hz, marking the transition from reheating to radiation domination, providing a unique probe of the properties of the early Universe.
Keywords:  gravitational waves      pulsars  
Received:  11 September 2024      Revised:  21 November 2024      Accepted manuscript online:  05 December 2024
PACS:  04.30.-w (Gravitational waves)  
  97.60.Gb (Pulsars)  
Fund: ZQY is supported by the National Natural Science Foundation of China (Grant No. 12305059), the Joint Fund of Henan Province Science and Technology R&D Program (Grant No. 235200810111), and the Startup Research Fund of Henan Academy of Sciences (Grant No. 241841224). FGZ is supported by the National Natural Science Foundation of China (Grant No. 12305075). JZ is supported by the National Natural Science Foundation of China (Grant No. 12403002) and the Startup Research Fund of Henan Academy of Sciences (Grant No. 241841221).
Corresponding Authors:  Zhi-Qiang You     E-mail:  you_zhiqiang@whu.edu.cn

Cite this article: 

Lele Fan(范乐乐), Jie Zheng(郑捷), Fengge Zhang(张丰阁), and Zhi-Qiang You(尤志强) Probing the shape of the primordial curvature power spectrum and the energy scale of reheating with pulsar timing arrays 2025 Chin. Phys. B 34 020402

[1] Abbott B P, Abbott R, Abbott T D, et al. (LIGO Scientific, Virgo) 2019 Phys. Rev. X 9 031040
[2] Abbott R, Abbott T D, Abraham S, et al. (LIGO Scientific, Virgo) 2021 Phys. Rev. X 11 021053
[3] Abbott R, Abbott T D, Acernese F, et al. (KAGRA, VIRGO, LIGO Scientific) 2023 Phys. Rev. X 13 041039
[4] Abbott R, Abbott T D, Abraham S, et al. (LIGO Scientific, Virgo) 2021 Phys. Rev. D 103 122002
[5] Abbott R, Abe H, Acernese F, et al. (LIGO Scientific, VIRGO, KAGRA) 2021 arXiv:2112.06861 [gr-qc]
[6] Abbott B P, Abbott R, Abbott T D, et al. (LIGO Scientific, Virgo) 2019 Astrophys. J. Lett. 882 L24
[7] Chen Z C, Huang F and Huang Q G 2019 Astrophys. J. 871 97
[8] Chen Z C and Huang Q G 2020 JCAP 08 039
[9] Abbott R, Abbott T D, Abraham S, et al. (LIGO Scientific, Virgo) 2021 Astrophys. J. Lett. 913 L7
[10] Chen Z C, Yuan C and Huang Q G 2022 Phys. Lett. B 829 137040
[11] Abbott R, Abbott T D, Acernese F, et al. (KAGRA, VIRGO, LIGO Scientific) 2023 Phys. Rev. X 13 011048
[12] Chen Z C, Du S S, Huang Q G and You Z Q 2023 JCAP 03 024
[13] Liu L, You Z Q, Wu Y and Chen Z C 2023 Phys. Rev. D 107 063035
[14] Zheng L M, Li Z, Chen Z C, Zhou H and Zhu Z H 2023 Phys. Lett. B 838 137720
[15] You Z Q, Chen Z C, Liu L, Yi Z, Liu X J, Wu Y and Gong Y 2024 JCAP 05 031
[16] Wei H, Chen Z C and Liu J 2013 Phys. Lett. B 720 271
[17] Wei H, Liu J, Chen Z C and Yan X P 2013 Phys. Rev. D 88 043510
[18] Du S S, Wei J J, You Z Q, Chen Z C, Zhu Z H and Liang E W 2023 Mon. Not. Roy. Astron. Soc. 521 4963
[19] Chen Z C, Wu Y and Wei H 2015 Nucl. Phys. B 894 422
[20] Wu Y, Chen Z C, Wang J and Wei H 2015 Commun. Theor. Phys. 63 701
[21] Huang Y, Gong Y, Liang D and Yi Z 2015 Eur. Phys. J. C 75 351
[22] Zhu Y and Gong Y 2016 Int. J. Mod. Phys. D 26 1750005
[23] Gong Y, Papantonopoulos E and Yi Z 2018 Eur. Phys. J. C 78 738
[24] Chen Z C and Liu L 2024 arXiv:2405.10031 [astro-ph.CO]
[25] Liu X J, You Z Q, Chen Z C, Du S S, Li A and Zhu X J 2024 Astrophys. J. 962 80
[26] Chen Z C, Huang Q G, Liu C, Liu L, Liu X J, Wu Y, Wu Y M, Yi Z and You Z Q 2024 JCAP 03 022
[27] Du S S, Liu X J, Chen Z C, You Z Q, Zhu X J and Zhu Z H 2024 Astrophys. J. 968 105
[28] Luo H M, LinW, Chen Z C and Huang Q G 2020 Front. Phys. 15 14601
[29] You Z Q, Ashton G, Zhu X J, Thrane E and Zhu Z H 2021 Mon. Not. Roy. Astron. Soc. 509 3957
[30] Chen Z C and Liu L 2024 arXiv:2404.08375 [gr-qc]
[31] Chen Z C and Liu L 2024 JCAP 06 028
[32] You Z Q, Zhu X J, Ashton G, Thrane E and Zhu Z H 2021 Astrophys. J. 908 215
[33] He X, Liao K, Ding X, Yang L,Wen X, You Z and Zhu Z H 2022 Mon. Not. Roy. Astron. Soc. 517 4656
[34] Amaro-Seoane P, Audley H, Babak S, et al. (LISA) 2017 arXiv:1702.00786 [astro-ph.IM]
[35] Hu W R and Wu Y L 2017 Natl. Sci. Rev. 4 685
[36] Ruan W H, Guo Z K, Cai R G and Zhang Y Z 2020 Int. J. Mod. Phys. A 35 2050075
[37] Luo J, Chen L S, Duan H Z, et al. (TianQin) 2016 Class. Quant. Grav. 33 035010
[38] Klein A, Barausse E, Sesana A, et al. 2016 Phys. Rev. D 93 024003
[39] Babak S, Gair J, Sesana A, Barausse E, Sopuerta C F, Berry C P L, Berti E, Amaro-Seoane P, Petiteau A and Klein A 2017 Phys. Rev. D 95 103012
[40] Gair J R, Babak S, Sesana A, Amaro-Seoane P, Barausse E, Berry C P L, Berti E and Sopuerta C 2017 J. Phys. Conf. Ser. 840 012021
[41] Fan H M, Hu Y M, Barausse E, Sesana A, Zhang J d, Zhang X, Zi T G and Mei J 2020 Phys. Rev. D 102 063016
[42] Sazhin M V 1978 Soviet Astronomy 22 36
[43] Detweiler S L 1979 Astrophys. J. 234 1100
[44] Foster R S and Backer D C 1990 Astrophys. J. 361 300
[45] Hellings R W and Downs G S 1983 Astrophys J. Lett. 265 L39
[46] Tiburzi C 2018 Publ. Astron. Soc. Austral. 35 e013
[47] Kelley L Z, Blecha L, Hernquist L, Sesana A and Taylor S R 2017 Mon. Not. Roy. Astron. Soc. 471 4508
[48] Li J, Chen Z C and Huang Q G 2019 Sci. China Phys. Mech. Astron. 62 110421
[49] Chen Z C, Yuan C and Huang Q G 2020 Phys. Rev. Lett. 124 251101
[50] Wu Y M, Chen Z C and Huang Q G 2023 Phys. Rev. D 107 042003
[51] Wu Y M, Chen Z C and Huang Q G 2023 JCAP 09 021
[52] Wu Y M, Chen Z C, Huang Q G, Zhu X, Bhat N D R, Feng Y, Hobbs G, Manchester R N, Russell C J and Shannon R M (PPTA) 2022 Phys. Rev. D 106 L081101
[53] Chen Z C, Yuan C and Huang Q G 2021 Sci. China Phys. Mech. Astron. 64 120412
[54] Chen Z C, Wu Y M and Huang Q G 2022 Astrophys. J. 936 20
[55] Chen Z C, Wu Y M and Huang Q G 2022 Commun. Theor. Phys. 74 105402
[56] Tan Q, Wu Y and Liu L 2024 arXiv:2409.17846 [gr-qc]
[57] Wu Y M, Chen Z C and Huang Q G 2022 Astrophys. J. 925 37
[58] Falxa M, Babak S, Baker P T, et al. (IPTA) 2023 Mon. Not. Roy. Astron. Soc. 521 5077
[59] McLaughlin M A 2013 Class. Quant. Grav. 30 224008
[60] Kramer M and Champion D J (EPTA) 2013 Class. Quant. Grav. 30 224009
[61] Manchester R N, Hobbs G, Bailes M, et al. 2013 Publ. Astron. Soc. Austral. 30 e017
[62] Miles M T, Shannon R M, Bailes M, et al. 2023 Mon. Not. Roy. Astron. Soc. 519 3976
[63] Lee K J 2016 Prospects of Gravitational Wave Detection Using Pulsar Timing Array for Chinese Future Telescopes Frontiers in Radio Astronomy and FAST Early Sciences Symposium (Astronomical Society of the Pacific Conference Series) p. 19
[64] Agazie G, Alam M F, Anumarlapudi A, et al. (NANOGrav) 2023 Astrophys. J. Lett. 951 L9
[65] Agazie G, Anumarlapudi A, Archibald A M, et al. (NANOGrav) 2023 Astrophys. J. Lett. 951 L8
[66] Zic A, Reardon D J, Kapur A, et al. 2023 Publ. Astron. Soc. Austral. 40 e049
[67] Reardon D J, Zic A, Shannon R M, et al. 2023 Astrophys. J. Lett. 951 L6
[68] Xu H, Chen S Y, Guo Y J, et al. 2023 Res. Astron. Astrophys. 23 075024
[69] Antoniadis J, Babak S, Bak Nielsen A S, et al. (EPTA) 2023 Astron. Astrophys. 678 A48
[70] Antoniadis J, Arumugam P, Arumugam S, et al. (EPTA, InPTA) 2023 Astron. Astrophys. 678 A50
[71] Bi Y C, Wu Y M, Chen Z C and Huang Q G 2023 Sci. China Phys. Mech. Astron. 66 120402
[72] Chen Z C, Li S L, Wu P and Yu H 2024 Phys. Rev. D 109 043022
[73] Chen Z C, Wu Y M, Bi Y C and Huang Q G 2024 Phys. Rev. D 109 084045
[74] Bi Y C, Wu Y M, Chen Z C and Huang Q G 2024 Phys. Rev. D 109 L061101
[75] Wu Y M, Chen Z C, Bi Y C and Huang Q G 2024 Class. Quant. Grav. 41 075002
[76] Agazie G, Antoniadis J, Anumarlapudi A, et al. (International Pulsar Timing Array) 2024 Astrophys. J. 966 105
[77] Witten E 1984 Phys. Rev. D 30 272
[78] Hogan C J 1986 Mon. Not. Roy. Astron. Soc. 218 629
[79] Caprini C, Durrer R and Siemens X 2010 Phys. Rev. D 82 063511
[80] Li S L, Shao L, Wu P and Yu H 2021 Phys. Rev. D 104 043510
[81] Vilenkin A 1981 Phys. Lett. B 107 47
[82] Damour T and Vilenkin A 2001 Phys. Rev. D 64 064008
[83] Damour T and Vilenkin A 2005 Phys. Rev. D 71 063510
[84] Vilenkin A 1981 Phys. Rev. D 23 852
[85] Hiramatsu T, Kawasaki M and Saikawa K 2014 JCAP 02 031
[86] Ananda K N, Clarkson C and Wands D 2007 Phys. Rev. D 75 123518
[87] Baumann D, Steinhardt P J, Takahashi K and Ichiki K 2007 Phys. Rev. D 76 084019
[88] Yuan C, Chen Z C and Huang Q G 2020 Phys. Rev. D 101 063018
[89] Yuan C, Chen Z C and Huang Q G 2020 Phys. Rev. D 101 043019
[90] Cai R G, Guo Z K, Liu J, Liu L and Yang X Y 2020 JCAP 06 013
[91] Chen Z C and Liu L 2024 arXiv:2402.16781 [astro-ph.CO]
[92] Chen Z C, Li J, Liu L and Yi Z 2024 Phys. Rev. D 109 L101302
[93] Liu L, Wu Y and Chen Z C 2024 JCAP 04 011
[94] Yi Z, Gao Q, Gong Y, Wang Y and Zhang F 2023 Sci. China Phys. Mech. Astron. 66 120404
[95] Fei Q 2024 Commun. Theor. Phys. 76 015404
[96] You Z Q, Yi Z and Wu Y 2023 JCAP 11 065
[97] Yi Z, You Z Q, Wu Y, Chen Z C and Liu L 2024 JCAP 06 043
[98] Domènech G, Pi S, Wang A and Wang J 2024 JCAP 08 054
[99] Tagliazucchi M, Braglia M, Finelli F and Pieroni M 2023 arXiv:2310.08527 [astro-ph.CO]
[100] Inomata K, Kohri K and Terada T 2024 Phys. Rev. D 109 063506
[101] Yuan C, Chen Z C and Liu L 2024 arXiv:2410.18996 [gr-qc]
[102] Starobinsky A A 1979 JETP Lett. 30 682
[103] Mukhanov V F and Chibisov G V 1981 JETP Lett. 33 532
[104] Guth A H and Pi S Y 1982 Phys. Rev. Lett. 49 1110
[105] Hawking S W 1982 Phys. Lett. B 115 295
[106] Starobinsky A A 1982 Phys. Lett. B 117 175
[107] Bardeen J M, Steinhardt P J and Turner M S 1983 Phys. Rev. D 28 679
[108] Guth A H 1981 Phys. Rev. D 23 347
[109] Linde A D 1982 Phys. Lett. B 108 389
[110] Albrecht A and Steinhardt P J 1982 Phys. Rev. Lett. 48 1220
[111] Linde A D 1983 Phys. Lett. B 129 177
[112] Saito R and Yokoyama J 2009 Phys. Rev. Lett. 102 161101 [Erratum: 2011 Phys. Rev. Lett. 107 069901]
[113] Saito R and Yokoyama J 2010 Prog. Theor. Phys. 123 867 [Erratum: 2011 Prog. Theor. Phys. 126 351]
[114] Bugaev E and Klimai P 2010 Phys. Rev. D 81 023517
[115] Bugaev E and Klimai P 2011 Phys. Rev. D 83 083521
[116] Liu L, Guo Z K and Cai R G 2019 Phys. Rev. D 99 063523
[117] Liu L, Guo Z K and Cai R G 2019 Eur. Phys. J. C 79 717
[118] Huang Q G, Yuan C, Chen Z C and Liu L 2024 JCAP 08 030
[119] Chen Z C and Hall A 2024 arXiv:2402.03934 [astro-ph.CO]
[120] Chen Z C and Liu L 2024 arXiv:2401.12889 [astro-ph.HE]
[121] Chen Z C, Kim S P and Liu L 2023 Commun. Theor. Phys. 75 065401
[122] Liu L, Guo Z K, Cai R G and Kim S P 2020 Phys. Rev. D 102 043508
[123] Liu L, Christiansen O, Guo Z K, Cai R G and Kim S P 2020 Phys. Rev. D 102 103520
[124] Liu L, Christiansen O, Ruan W H, Guo Z K, Cai R G and Kim S P 2021 Eur. Phys. J. C 81 1048
[125] Liu L and Kim S P 2024 AIP Conf. Proc. 2874 020001
[126] Chen Z C and Huang Q G 2018 Astrophys. J. 864 61
[127] Yuan C, Chen Z C and Huang Q G 2019 Phys. Rev. D 100 081301
[128] Liu L, Yang X Y, Guo Z K and Cai R G 2023 JCAP 01 006
[129] Yi Z, You Z Q and Wu Y 2024 JCAP 01 066
[130] Wu Y 2020 Phys. Rev. D 101 083008
[131] Liu L and Kim S P 2022 JCAP 03 059
[132] Meng D S, Yuan C and Huang Q G 2023 Sci. China Phys. Mech. Astron. 66 280411
[133] Carr B, Kohri K, Sendouda Y and Yokoyama J 2021 Rept. Prog. Phys. 84 116902
[134] Maggiore M 2000 Phys. Rept. 331 283
[135] Boyle L A and Steinhardt P J 2008 Phys. Rev. D 77 063504
[136] Watanabe Y and Komatsu E 2006 Phys. Rev. D 73 123515
[137] Kuroyanagi S, Nakayama K and Saito S 2011 Phys. Rev. D 84 123513
[138] Wu Y, Chen Z C and Liu L 2024 arXiv:2409.14929 [astro-ph.CO]
[139] Kuroyanagi S, Nakayama K and Yokoyama J 2015 PTEP 2015 013E02
[140] Bird S, Cholis I, Muñoz J B, Ali-Haïmoud Y, Kamionkowski M, Kovetz E D, Raccanelli A and Riess A G 2016 Phys. Rev. Lett. 116 201301
[141] Sasaki M, Suyama T, Tanaka T and Yokoyama S 2016 Phys. Rev. Lett. 117 061101 [Erratum: 2018 Phys. Rev. Lett. 121 059901]
[142] Mukhanov V F, Feldman H A and Brandenberger R H 1992 Phys. Rept. 215 203
[143] Weinberg S 2008 Cosmology (Oxford)
[144] Armendariz-Picon C, Mukhanov V F and Steinhardt P J 2001 Phys. Rev. D 63 103510
[145] Liddle A R and Leach S M 2003 Phys. Rev. D 68 103503
[146] Cheung C, Creminelli P, Fitzpatrick A L, Kaplan J and Senatore L 2008 JHEP 03 014
[147] Kachru S, Kallosh R, Linde A D, Maldacena J M, McAllister L P and Trivedi S P 2003 JCAP 10 013
[148] Baumann D and McAllister L 2015 Inflation and String Theory Cambridge Monographs on Mathematical Physics (Cambridge University Press)
[149] Domènech G 2020 Int. J. Mod. Phys. D 29 2050028
[150] Inomata K, Kohri K, Nakama T and Terada T 2019 Phys. Rev. D 100 043532 [Erratum: 2023 Phys. Rev. D 108 049901]
[151] Inomata K, Kohri K, Nakama T and Terada T 2019 JCAP 10 071
[152] Domènech G, Pi S and Sasaki M 2020 JCAP 08 017
[153] Inomata K 2021 JCAP 03 013
[154] Fumagalli J, Renaux-Petel S and Witkowski L T 2021 JCAP 08 030
[155] Kofman L, Linde A D and Starobinsky A A 1994 Phys. Rev. Lett. 73 3195
[156] Kofman L, Linde A D and Starobinsky A A 1997 Phys. Rev. D 56 3258
[157] Bassett B A, Tsujikawa S and Wands D 2006 Rev. Mod. Phys. 78 537
[158] Allahverdi R, Brandenberger R, Cyr-Racine F Y and Mazumdar A 2010 Ann. Rev. Nucl. Part. Sci. 60 27
[159] Pi S and Sasaki M 2020 JCAP 09 037
[160] Saikawa K and Shirai S 2018 JCAP 05 035
[161] Domènech G 2021 Universe 7 398
[162] Liu L, Chen Z C and Huang Q G 2023 JCAP 11 071
[163] Kawasaki M, Kohri K and Sugiyama N 1999 Phys. Rev. Lett. 82 4168
[164] Kawasaki M, Kohri K and Sugiyama N 2000 Phys. Rev. D 62 023506
[165] Hannestad S 2004 Phys. Rev. D 70 043506
[166] Hasegawa T, Hiroshima N, Kohri K, Hansen R S L, Tram T and Hannestad S 2019 JCAP 12 012
[167] Zel’dovich Y B and Novikov I D 1967 Sov. Astron. 10 602
[168] Hawking S 1971 Mon. Not. Roy. Astron. Soc. 152 75
[169] Carr B J and Hawking S W 1974 Mon. Not. Roy. Astron. Soc. 168 399
[170] Meszaros P 1974 Astron. Astrophys. 37 225
[171] Carr B J 1975 Astrophys. J. 201 1
[172] Musco I, Miller J C and Rezzolla L 2005 Class. Quant. Grav. 22 1405
[173] Musco I, Miller J C and Polnarev A G 2009 Class. Quant. Grav. 26 235001
[174] Musco I and Miller J C 2013 Class. Quant. Grav. 30 145009
[175] Harada T, Yoo C M and Kohri K 2013 Phys. Rev. D 88 084051 [Erratum: 2014 Phys. Rev. D 89 029903]
[176] Escrivà A, Germani C and Sheth R K 2021 JCAP 01 030
[177] Domènech G and Pi S 2022 Sci. China Phys. Mech. Astron. 65 230411
[178] Balaji S, Domènech G and Franciolini G 2023 JCAP 10 041
[179] Sasaki M, Suyama T, Tanaka T and Yokoyama S 2018 Class. Quant. Grav. 35 063001
[180] Afzal A, Agazie G, Anumarlapudi A, et al. (NANOGrav) 2023 Astrophys. J. Lett. 951 L11 [Erratum: 2024 Astrophys. J. Lett. 971 L27]
[181] Moore C J and Vecchio A 2021 Nat. Astron. 5 1268
[182] Lamb W G, Taylor S R and van Haasteren R 2023 Phys. Rev. D 108 103019
[183] Liu L, Chen Z C and Huang Q G 2024 Phys. Rev. D 109 L061301
[184] Wu Y M, Chen Z C and Huang Q G 2024 Sci. China Phys. Mech. Astron. 67 240412
[185] Jin J H, Chen Z C, Yi Z, You Z Q, Liu L and Wu Y 2023 JCAP 09 016
[186] Ashton G, Hübner M, Lasky P D, et al. 2019 Astrophys. J. Suppl. 241 27
[187] Kohri K and Terada T 2018 Phys. Rev. D 97 123532
[188] Harigaya K, Inomata K and Terada T 2023 Phys. Rev. D 108 123538
[1] Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector
Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Chin. Phys. B, 2024, 33(8): 080401.
[2] Application of Newtonian approximate model to LIGO gravitational wave data processing
Jie Wu(吴洁), Jin Li(李瑾), and Qing-Quan Jiang(蒋青权). Chin. Phys. B, 2023, 32(9): 090401.
[3] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
[4] High-frequency gravitational waves having large spectral densities and their electromagnetic response
Li Fang-Yu (李芳昱), Wen Hao (文毫), Fang Zhen-Yun (方祯云). Chin. Phys. B, 2013, 22(12): 120402.
[5] Impact of neutron star crust on gravitational waves from the axial  w-modes
Wen De-Hua(文德华), Fu Hong-Yang(付宏洋), and Chen Wei(陈伟). Chin. Phys. B, 2011, 20(6): 060402.
[6] Noise in a coupling electromagnetic detecting system for high frequency gravitational waves
Li Jin(李瑾), Li Fang-Yu(李芳昱), and Zhong Yuan-Hong(仲元红). Chin. Phys. B, 2009, 18(3): 922-926.
[7] Modification of gravitational redshift of x-ray burst produced by pulsar surface magnetoplasma
Zhu Jun(祝俊) and Ji Pei-Yong(季沛勇). Chin. Phys. B, 2008, 17(1): 356-361.
[8] Improved calculation of relic gravitational waves
Zhao Wen(赵文). Chin. Phys. B, 2007, 16(10): 2894-2902.
No Suggested Reading articles found!