|
|
Electron correlation in two-electron atoms: A Bohmian analysis of high-order harmonic generation in high-frequency domain |
Yang Song(宋阳)1, Shu Han(韩姝)2, Yujun Yang(杨玉军)3,†, and Fuming Guo(郭福明)3,‡ |
1 College of Science, Northeast Electric Power University, Jilin 132012, China; 2 Archives, Northeast Electric Power University, Jilin 132012, China; 3 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract In studying interactions between intense laser fields and atoms or molecules, the role of electron correlation effects on the dynamical response is an important and pressing issue to address. Utilizing Bohmian mechanics (BM), we have theoretically explored the two-electron correlation characteristics while generating high-order harmonics in xenon atoms subjected to intense laser fields. We initially employed Bohmian trajectories to reproduce the dynamics of the electrons and subsequently utilized time-frequency analysis spectra to ascertain the emission time windows for high-order harmonics. Within these time windows, we classified the nuclear region Bohmian trajectories and observed that intense high-order harmonics are solely generated when paired Bohmian particles (BPs) concurrently appear in the nuclear region and reside there for a duration within a re-collision time window. Furthermore, our analysis of characteristic trajectories producing high-order harmonics led us to propose a two-electron re-collision model to elucidate this phenomenon. The study demonstrates that intense high-order harmonics are only generated when both electrons are in the ground state within the re-collision time window. This work discusses the implications of correlation effects between two electrons and offers valuable insights for studying correlation in multi-electron high-order harmonic generation.
|
Received: 22 August 2024
Revised: 26 September 2024
Accepted manuscript online: 09 October 2024
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the Natural Science Foundation (General Project) of Jilin Province, China (Grant No. 20230101283JC). |
Corresponding Authors:
Yujun Yang, Fuming Guo
E-mail: yangyj@jlu.edu.cn;guofm@jlu.edu.cn
|
Cite this article:
Yang Song(宋阳), Shu Han(韩姝), Yujun Yang(杨玉军), and Fuming Guo(郭福明) Electron correlation in two-electron atoms: A Bohmian analysis of high-order harmonic generation in high-frequency domain 2024 Chin. Phys. B 33 123201
|
[1] Qiao Y, Chen J, Li Z, Liu Y, Jiang S, Liu W, Yang Y and Chen J 2024 Opt. Lett. 49 3986 [2] Chu S I and Cooper J 1985 Phys. Rev. A 32 2769 [3] Javanainen J, Eberly J H and Su Q 1988 Phys. Rev. A 38 3430 [4] Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227 [5] Spielmann Ch, Burnett N H, Sartania S, Koppitsch R, Schnürer M, Kan C, Lenzner M, Wobrauschek P and Krausz F 1997 Science 278 661 [6] Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, De Silvestri S and Nisoli M 2006 Science 314 443 [7] Corkum P B and Krausz F 2007 Nat. Phys. 3 381 [8] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [9] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535 [10] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389 [11] Burnett K, Reed V C and Knight P L 1993 J. Phys. B 26 561 [12] Schafer K J, Yang B, Dimauro L F and Kulander K C 1993 Phys. Rev. Lett. 70 1599 [13] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [14] Lewenstein M, Balcou P, Ivanov M Y, L’Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117 [15] Liu W C, Eberly J H, Haan S L and Grobe R 1999 Phys. Rev. Lett. 83 520 [16] Lappas D G, Sanpera A, Watson J B, Burnett K, Knight P L, Grobe R and Eberly J H 1996 J. Phys. B 29 L619 [17] Grobe R and Eberly J H 1993 Phys. Rev. A 48 4664 [18] Koval P, Wilken F, Bauer D and Keitel C H 2007 Phys. Rev. Lett. 98 043904 [19] Bandrauk A D and Lu H Z 2005 J. Phys. B 38 2529 [20] Hu S L and Shi T Y 2013 Chin. Phys. B 22 013101 [21] Lai X Y, Cai Q Y and Zhan M S 2009 New J. Phys. 11 113035 [22] Lai X Y, Cai Q Y and Zhan M S. 2009 Eur. Phys. J. D 53 393 [23] Takemoto N and Becker A 2011 J. Chem. Phys. 134 074309 [24] Wei S S, Li S Y, Guo F M, Yang Y J and Wang B B 2013 Phys. Rev. A 87 063418 [25] Song Y, Yang Y J, Guo F M and Li S Y 2017 J. Phys. B 50 095003 [26] Bohm D 1952 Phys. Rev. 85 166 [27] Song Y, Zhao S, Guo F M, Yang Y J and Li S Y 2016 Chin. Phys. B 25 033204 [28] Lai X Y, Cai Q Y and Zhan M S 2010 Chin. Phys. B 19 020302 [29] Song Y, Guo F M, Li S Y, Chen J G, Zeng S L and Yang Y J 2012 Phys. Rev. A 86 033424 [30] Wu J, Augstein B B and Figueira de Morisson Faria C 2013 Phys. Rev. A 88 023415 [31] Song Y, Li S Y, Liu X S, Guo F M and Yang Y J 2013 Phys. Rev. A 88 053419 [32] Song Y, Han S, Yang Y J, Guo F M and Li S Y 2020 Chin. Phys. B 29 113201 [33] Sawada R, Sato T and Ishikawa K L 2014 Phys. Rev. A 90 023404 [34] Dieter U and Ahrens J H 1974 Acceptance-Rejection Techniques for Sampling from the Gamma and Beta Distributions (Stanford, CA: Stanford University Press) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|